3,365 research outputs found
Weak magnetic fields in central stars of planetary nebulae?
It is not yet clear whether magnetic fields play an essential role in shaping
planetary nebulae (PNe), or whether stellar rotation alone and/or a close
binary companion can account for the variety of the observed nebular
morphologies. In a quest for empirical evidence verifying or disproving the
role of magnetic fields in shaping PNe, we follow up on previous attempts to
measure the magnetic field in a representative sample of PN central stars. We
obtained low-resolution polarimetric spectra with FORS 2 at VLT for a sample of
twelve bright central stars of PNe with different morphology, including two
round nebulae, seven elliptical nebulae, and three bipolar nebulae. Two targets
are Wolf-Rayet type central stars. For the majority of the observed central
stars, we do not find any significant evidence for the existence of surface
magnetic fields. However, our measurements may indicate the presence of weak
mean longitudinal magnetic fields of the order of 100 Gauss in the central star
of the young elliptical planetary nebula IC 418, as well as in the Wolf-Rayet
type central star of the bipolar nebula Hen2-113 and the weak emission line
central star of the elliptical nebula Hen2-131. A clear detection of a 250 G
mean longitudinal field is achieved for the A-type companion of the central
star of NGC 1514. Some of the central stars show a moderate night-to-night
spectrum variability, which may be the signature of a variable stellar wind
and/or rotational modulation due to magnetic features. We conclude that strong
magnetic fields of the order of kG are not widespread among PNe central stars.
Nevertheless, simple estimates based on a theoretical model of magnetized wind
bubbles suggest that even weak magnetic fields below the current detection
limit of the order of 100 G may well be sufficient to contribute to the shaping
of PNe throughout their evolution.Comment: 16 pages, 11 figures, 3 tables, accepted for publication in A&A;
References updated, minor correction
Wolf-Rayet stars in the Small Magellanic Cloud: I. Analysis of the single WN stars
Wolf-Rayet (WR) stars have a severe impact on their environments owing to
their strong ionizing radiation fields and powerful stellar winds. Since these
winds are considered to be driven by radiation pressure, it is theoretically
expected that the degree of the wind mass-loss depends on the initial
metallicity of WR stars. Following our comprehensive studies of WR stars in the
Milky Way, M31, and the LMC, we derive stellar parameters and mass-loss rates
for all seven putatively single WN stars known in the SMC. Based on these data,
we discuss the impact of a low-metallicity environment on the mass loss and
evolution of WR stars. The quantitative analysis of the WN stars is performed
with the Potsdam Wolf-Rayet (PoWR) model atmosphere code. The physical
properties of our program stars are obtained from fitting synthetic spectra to
multi-band observations. In all SMC WN stars, a considerable surface hydrogen
abundance is detectable. The majority of these objects have stellar
temperatures exceeding 75 kK, while their luminosities range from 10^5.5 to
10^6.1 Lsun. The WN stars in the SMC exhibit on average lower mass-loss rates
and weaker winds than their counterparts in the Milky Way, M31, and the LMC. By
comparing the mass-loss rates derived for WN stars in different Local Group
galaxies, we conclude that a clear dependence of the wind mass-loss on the
initial metallicity is evident, supporting the current paradigm that WR winds
are driven by radiation. A metallicity effect on the evolution of massive stars
is obvious from the HRD positions of the SMC WN stars at high temperatures and
high luminosities. Standard evolution tracks are not able to reproduce these
parameters and the observed surface hydrogen abundances. Homogeneous evolution
might provide a better explanation for their evolutionary past.Comment: 18+12 pages; 22+8 figures; accepted for publication in A&
On X-ray pulsations in beta Cephei-type variables
Beta Cephei-type variables are early B-type stars that are characterized by
oscillations observable in their optical light curves. At least one Beta
Cep-variable also shows periodic variability in X-rays. Here we study the X-ray
light curves in a sample of beta Cep-variables to investigate how common X-ray
pulsations are for this type of stars. We searched the Chandra and XMM-Newton
X-ray archives and selected stars that were observed by these telescopes for at
least three optical pulsational periods. We retrieved and analyzed the X-ray
data for kappa Sco, beta Cru, and alpha Vir. The X-ray light curves of these
objects were studied to test for their variability and periodicity. While there
is a weak indication for X-ray variability in beta Cru, we find no
statistically significant evidence of X-ray pulsations in any of our sample
stars. This might be due either to the insufficient data quality or to the
physical lack of modulations. New, more sensitive observations should settle
this question.Comment: accepted in A&
The Wolf-Rayet binaries of the nitrogen sequence in the Large Magellanic Cloud: spectroscopy, orbital analysis, formation, and evolution
Massive Wolf-Rayet (WR) stars dominate the radiative and mechanical energy
budget of galaxies and probe a critical phase in the evolution of massive stars
prior to core-collapse. It is not known whether core He-burning WR stars
(classical WR, cWR) form predominantly through wind-stripping (w-WR) or binary
stripping (b-WR). With spectroscopy of WR binaries so-far largely avoided due
to its complexity, our study focuses on the 44 WR binaries / binary candidates
of the Large Magellanic Cloud (LMC, metallicity Z~0.5 Zsun), identified on the
basis of radial velocity variations, composite spectra, or high X-ray
luminosities. Relying on a diverse spectroscopic database, we aim to derive the
physical and orbital parameters of our targets, confronting evolution models of
evolved massive stars at sub-solar metallicity, and constraining the impact of
binary interaction in forming them. Spectroscopy is performed using the Potsdam
Wolf-Rayet (PoWR) code and cross-correlation techniques. Disentanglement is
performed using the code Spectangular or the shift-and-add algorithm.
Evolutionary status is interpreted using the Binary Population and Spectral
Synthesis (BPASS) code, exploring binary interaction and chemically-homogeneous
evolution.
No obvious dichotomy in the locations of apparently-single and binary WN
stars on the Hertzsprung-Russell diagram is apparent. According to commonly
used stellar evolution models (BPASS, Geneva), most apparently-single WN stars
could not have formed as single stars, implying that they were stripped by an
undetected companion. Otherwise, it must follow that pre-WR mass-loss/mixing
(e.g., during the red supergiant phase) are strongly underestimated in standard
stellar evolution models.Comment: accepted to A&A on 10.05.2019; 69 pages (25 main paper + 44
appendix); Corrigendum: Shenar et al. 2020, A&A, 641, 2: An unfortunate typo
in the implementation of the "transformed radius" caused errors of up to
~0.5dex in the derived mass-loss rates. This has now been correcte
A " high 4 He/ 3 He " mantle material detected under the East Pacific Rise (15°4′N)
International audienceWe investigate in details helium isotope data reported in Mougel et al. (2014) for 14 basaltic samples collected on the East Pacific Rise by submersible (15°4′N) where the ridge interacts with the Mathematician seamounts. Samples locations are separated by only few hundred meters across a 15 km along-axis profile. The data reveal a strong geochemical variability that has never been observed at such high spatial resolution for helium isotope compositions. Moreover, they reveal an unusually high 4 He/ 3 He mantle component also characterized by unradiogenic lead, atypical in oceanic basalts. He-Pb systematics suggests a mixture between a nonradiogenic lead and radiogenic helium pyroxenitic component, recycled from the deep continental lithosphere and the ambient peridotitic mantle. The He isotope difference between these two end-members can be interpreted as a time evolution of two distinct mantle sources after a slight (U + Th)/ 3 He fractionation, likely due to some ancient degassing during the formation of deep continental pyroxenites
Abyssal fauna of the UK-1 polymetallic nodule exploration area, Clarion-Clipperton Zone, central Pacific Ocean: Mollusca
The file attached is the Published/publisher’s pdf version of the article. This is an OpenAccess article.Copyright Helena Wiklund et al. This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited
A compact statistical model of the song syntax in Bengalese finch
Songs of many songbird species consist of variable sequences of a finite
number of syllables. A common approach for characterizing the syntax of these
complex syllable sequences is to use transition probabilities between the
syllables. This is equivalent to the Markov model, in which each syllable is
associated with one state, and the transition probabilities between the states
do not depend on the state transition history. Here we analyze the song syntax
in a Bengalese finch. We show that the Markov model fails to capture the
statistical properties of the syllable sequences. Instead, a state transition
model that accurately describes the statistics of the syllable sequences
includes adaptation of the self-transition probabilities when states are
repeatedly revisited, and allows associations of more than one state to the
same syllable. Such a model does not increase the model complexity
significantly. Mathematically, the model is a partially observable Markov model
with adaptation (POMMA). The success of the POMMA supports the branching chain
network hypothesis of how syntax is controlled within the premotor song nucleus
HVC, and suggests that adaptation and many-to-one mapping from neural
substrates to syllables are important features of the neural control of complex
song syntax
Sr-Nd-Pb-Hf isotope results from ODP Leg 187: Evidence for mantle dynamics of the Australian-Antarctic Discordance and origin of the Indian MORB source
New high precision PIMMS Hf and Pb isotope data for 14–28 Ma basalts recovered during ODP Leg 187 are compared with zero-age dredge samples from the Australian-Antarctic Discordance (AAD). These new data show that combined Nd-Hf isotope systematics can be used as an effective discriminant between Indian and Pacific MORB source mantle domains. In particular, Indian mantle is displaced to lower εNd and higher εHf ratios compared to Pacific mantle. As with Pb isotope plots, there is almost no overlap between the two mantle types in Nd-Hf isotope space. On the basis of our new Nd-Hf isotope data, we demonstrate that Pacific MORB-source mantle was present near the eastern margin of the AAD from as early as 28 Ma, its boundary with Indian MORB-source mantle coinciding with the eastern edge of a basin-wide arcuate depth anomaly that is centered on the AAD. This observation rules out models requiring rapid migration of Pacific MORB mantle into the Indian Ocean basin since separation of Australia from Antarctica. Although temporal variations in isotopic composition can be discerned relative to the fracture zone boundary of the modern AAD at 127°E, the distribution of different compositional groups appears to have remained much the same relative to the position of the residual depth anomaly for the past 30 m.y. Thus significant lateral flow of mantle along the ridge axis toward the interface appears unlikely. Instead, the dynamics that maintain both the residual depth anomaly and the isotopic boundary between Indian and Pacific mantle are due to eastward migration of the Australian and Antarctic plates over a stagnated, but slowly upwelling, slab oriented roughly orthogonal to the ridge axis. Temporal and spatial variations in the compositions of Indian MORB basalts within the AAD can be explained by progressive displacement of shallower Indian MORB-source mantle by deeper mantle having a higher εHf composition ascending ahead of the upwelling slab. Models for the origin of the distinctive composition of the Indian MORB-source based on recycling of a heterogeneous enriched component that consist of ancient altered ocean crust plus<10% pelagic sediment are inconsistent with Nd-Hf isotope systematics. Instead, the data can be explained by a model in which Indian mantle includes a significant proportion of material that was processed in the mantle wedge above a subduction zone and was subsequently mixed back into unprocessed upper mantle
Discovery of two new Galactic candidate luminous blue variables with WISE
We report the discovery of two new Galactic candidate luminous blue variable
(cLBV) stars via detection of circular shells (typical of known confirmed and
cLBVs) and follow-up spectroscopy of their central stars. The shells were
detected at 22 um in the archival data of the Mid-Infrared All Sky Survey
carried out with the Wide-field Infrared Survey Explorer (WISE). Follow-up
optical spectroscopy of the central stars of the shells conducted with the
renewed Southern African Large Telescope (SALT) showed that their spectra are
very similar to those of the well-known LBVs P Cygni and AG Car, and the
recently discovered cLBV MN112, which implies the LBV classification for these
stars as well. The LBV classification of both stars is supported by detection
of their significant photometric variability: one of them brightened in the R-
and I-bands by 0.68\pm0.10 mag and 0.61\pm0.04 mag, respectively, during the
last 13-18 years, while the second one (known as Hen 3-1383) varies its B,V,R,I
and K_s brightnesses by \simeq 0.5-0.9 mag on time-scales from 10 days to
decades. We also found significant changes in the spectrum of Hen 3-1383 on a
timescale of \simeq 3 months, which provides additional support for the LBV
classification of this star. Further spectrophotometric monitoring of both
stars is required to firmly prove their LBV status. We discuss a connection
between the location of massive stars in the field and their fast rotation, and
suggest that the LBV activity of the newly discovered cLBVs might be directly
related to their possible runaway status.Comment: 15 pages, 8 figures, 5 tables. Accepted for publication in MNRA
Measurement of the cross-section and charge asymmetry of bosons produced in proton-proton collisions at TeV with the ATLAS detector
This paper presents measurements of the and cross-sections and the associated charge asymmetry as a
function of the absolute pseudorapidity of the decay muon. The data were
collected in proton--proton collisions at a centre-of-mass energy of 8 TeV with
the ATLAS experiment at the LHC and correspond to a total integrated luminosity
of 20.2~\mbox{fb^{-1}}. The precision of the cross-section measurements
varies between 0.8% to 1.5% as a function of the pseudorapidity, excluding the
1.9% uncertainty on the integrated luminosity. The charge asymmetry is measured
with an uncertainty between 0.002 and 0.003. The results are compared with
predictions based on next-to-next-to-leading-order calculations with various
parton distribution functions and have the sensitivity to discriminate between
them.Comment: 38 pages in total, author list starting page 22, 5 figures, 4 tables,
submitted to EPJC. All figures including auxiliary figures are available at
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/STDM-2017-13
- …
