223 research outputs found

    Prevention of implant-related infections by a resorbable, antibacterial-loaded coating: a new approach

    Get PDF
    Currently studied antibacterial coatings are far from having large-scale applications, due to various limitations. A recently developed fast resorbable, antibacterial-loaded, hydrogel coating may provide a new approach to offer an effective antibacterial and antibiofilm protection to orthopedic implants

    Immunity to Lutzomyia intermedia Saliva Modulates the Inflammatory Environment Induced by Leishmania braziliensis

    Get PDF
    Transmission of Leishmania parasites occurs during blood feeding, when infected female sand flies inject humans with parasites and saliva. Chemokines and cytokines are secreted proteins that regulate the initial immune responses and have the potential of attracting and activating cells. Herein, we studied the expression of such molecules and the cellular recruitment induced by salivary proteins of the Lutzomyia intermedia sand fly. Of note, Lutzomyia intermedia is the main vector of Leishmania braziliensis, a parasite species that causes cutaneous leishmaniasis, a disease associated with the development of destructive skin lesions that can be fatal if left untreated. We observed that L. intermedia salivary proteins induce a potent cellular recruitment and modify the expression profile of chemokines and cytokines in mice. More importantly, in mice previously immunized with L. intermedia saliva, the alteration in the initial inflammatory response was even more pronounced, in terms of the number of cells recruited and in terms of gene expression pattern. These findings indicate that an existing immunity to L. intermedia sand fly induces an important modulation in the initial immune response that may, in turn, promote parasite multiplication, leading to the development of cutaneous leishmaniasis

    Leukocyte ADAM17 Regulates Acute Pulmonary Inflammation

    Get PDF
    The transmembrane protease ADAM17 regulates the release and density of various leukocyte cell surface proteins that modulate inflammation, including L-selectin, TNF-α, and IL-6R. At this time, its in vivo substrates and role in pulmonary inflammation have not been directly examined. Using conditional ADAM17 knock-out mice, we investigated leukocyte ADAM17 in acute lung inflammation. Alveolar TNF-α levels were significantly reduced (>95%) in ADAM17-null mice following LPS administration, as was the shedding of L-selectin, a neutrophil-expressed adhesion molecule. Alveolar IL-6R levels, however, were reduced by only ≈25% in ADAM17-null mice, indicating that ADAM17 is not its primary sheddase in our model. Neutrophil infiltration into the alveolar compartment is a key event in the pathophysiology of acute airway inflammation. Following LPS inhalation, alveolar neutrophil levels and lung inflammation in ADAM17-null mice were overall reduced when compared to control mice. Interestingly, however, neutrophil recruitment to the alveolar compartment occurred earlier in ADAM17-null mice after exposure to LPS. This decrease in alveolar neutrophil recruitment in ADAM17-null mice was accompanied by significantly diminished alveolar levels of the neutrophil-tropic chemokines CXCL1 and CXCL5. Altogether, our study suggests that leukocyte ADAM17 promotes inflammation in the lung, and thus this sheddase may be a potential target in the design of pharmacologic therapies for acute lung injury

    Search for pair-produced long-lived neutral particles decaying to jets in the ATLAS hadronic calorimeter in ppcollisions at √s=8TeV

    Get PDF
    The ATLAS detector at the Large Hadron Collider at CERN is used to search for the decay of a scalar boson to a pair of long-lived particles, neutral under the Standard Model gauge group, in 20.3fb−1of data collected in proton–proton collisions at √s=8TeV. This search is sensitive to long-lived particles that decay to Standard Model particles producing jets at the outer edge of the ATLAS electromagnetic calorimeter or inside the hadronic calorimeter. No significant excess of events is observed. Limits are reported on the product of the scalar boson production cross section times branching ratio into long-lived neutral particles as a function of the proper lifetime of the particles. Limits are reported for boson masses from 100 GeVto 900 GeV, and a long-lived neutral particle mass from 10 GeVto 150 GeV

    Bladder inflammatory transcriptome in response to tachykinins: Neurokinin 1 receptor-dependent genes and transcription regulatory elements

    Get PDF
    Background Tachykinins (TK), such as substance P, and their neurokinin receptors which are ubiquitously expressed in the human urinary tract, represent an endogenous system regulating bladder inflammatory, immune responses, and visceral hypersensitivity. Increasing evidence correlates alterations in the TK system with urinary tract diseases such as neurogenic bladders, outflow obstruction, idiopathic detrusor instability, and interstitial cystitis. However, despite promising effects in animal models, there seems to be no published clinical study showing that NK-receptor antagonists are an effective treatment of pain in general or urinary tract disorders, such as detrusor overactivity. In order to search for therapeutic targets that could block the tachykinin system, we set forth to determine the regulatory network downstream of NK1 receptor activation. First, NK1R-dependent transcripts were determined and used to query known databases for their respective transcription regulatory elements (TREs). Methods: An expression analysis was performed using urinary bladders isolated from sensitized wild type (WT) and NK1R-/- mice that were stimulated with saline, LPS, or antigen to provoke inflammation. Based on cDNA array results, NK1R-dependent genes were selected. PAINT software was used to query TRANSFAC database and to retrieve upstream TREs that were confirmed by electrophoretic mobility shift assays. Results: The regulatory network of TREs driving NK1R-dependent genes presented cRel in a central position driving 22% of all genes, followed by AP-1, NF-kappaB, v-Myb, CRE-BP1/c-Jun, USF, Pax-6, Efr-1, Egr-3, and AREB6. A comparison between NK1R-dependent and NK1R-independent genes revealed Nkx-2.5 as a unique discriminator. In the presence of NK1R, Nkx2-5 _01 was significantly correlated with 36 transcripts which included several candidates for mediating bladder development (FGF) and inflammation (PAR-3, IL-1R, IL-6, α-NGF, TSP2). In the absence of NK1R, the matrix Nkx2-5_02 had a predominant participation driving 8 transcripts, which includes those involved in cancer (EYA1, Trail, HSF1, and ELK-1), smooth-to-skeletal muscle trans-differentiation, and Z01, a tight-junction protein, expression. Electrophoretic mobility shift assays confirmed that, in the mouse urinary bladder, activation of NK1R by substance P (SP) induces both NKx-2.5 and NF-kappaB translocations. Conclusion: This is the first report describing a role for Nkx2.5 in the urinary tract. As Nkx2.5 is the unique discriminator of NK1R-modulated inflammation, it can be imagined that in the near future, new based therapies selective for controlling Nkx2.5 activity in the urinary tract may be used in the treatment in a number of bladder disorders

    Viral Capsid Is a Pathogen-Associated Molecular Pattern in Adenovirus Keratitis

    Get PDF
    Human adenovirus (HAdV) infection of the human eye, in particular serotypes 8, 19 and 37, induces the formation of corneal subepithelial leukocytic infiltrates. Using a unique mouse model of adenovirus keratitis, we studied the role of various virus-associated molecular patterns in subsequent innate immune responses of resident corneal cells to HAdV-37 infection. We found that neither viral DNA, viral gene expression, or viral replication was necessary for the development of keratitis. In contrast, empty viral capsid induced keratitis and a chemokine profile similar to intact virus. Transfected viral DNA did not induce leukocyte infiltration despite CCL2 expression similar to levels in virus infected corneas. Mice without toll-like receptor 9 (Tlr9) signaling developed clinical keratitis upon HAdV-37 infection similar to wild type mice, although the absolute numbers of activated monocytes in the cornea were less in Tlr9−/− mice. Virus induced leukocytic infiltrates and chemokine expression in mouse cornea could be blocked by treatment with a peptide containing arginine glycine aspartic acid (RGD). These results demonstrate that adenovirus infection of the cornea induces chemokine expression and subsequent infiltration by leukocytes principally through RGD contact between viral capsid and the host cell, possibly through direct interaction between the viral capsid penton base and host cell integrins

    Impaired immune responses in the lungs of aged mice following influenza infection

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Each year, influenza virus infection causes severe morbidity and mortality, particularly in the most susceptible groups including children, the elderly (>65 years-old) and people with chronic respiratory diseases. Among the several factors that contribute to the increased susceptibility in elderly populations are the higher prevalence of chronic diseases (<it>e.g</it>. diabetes) and the senescence of the immune system.</p> <p>Methods</p> <p>In this study, aged and adult mice were infected with sublethal doses of influenza virus (A/Puerto Rico/8/1934). Differences in weight loss, morbidity, virus titer and the kinetics of lung infiltration with cells of the innate and adaptive immune responses were analyzed. Additionally, the main cytokines and chemokines produced by these cells were also assayed.</p> <p>Results</p> <p>Compared to adult mice, aged mice had higher morbidity, lost weight more rapidly, and recovered more slowly from infection. There was a delay in the accumulation of granulocytic cells and conventional dendritic cells (cDCs), but not macrophages in the lungs of aged mice compared to adult animals. The delayed infiltration kinetics of APCs in aged animals correlated with alteration in their activation (CD40 expression), which also correlated with a delayed detection of cytokines and chemokines in lung homogenates. This was associated with retarded lung infiltration by natural killer (NK), CD4<sup>+ </sup>and CD8<sup>+ </sup>T-cells. Furthermore, the percentage of activated (CD69+) influenza-specific and IL-2 producer CD8+ T-cells was higher in adult mice compared to aged ones. Additionally, activation (CD69+) of adult B-cells was earlier and correlated with a quicker development of neutralizing antibodies in adult animals.</p> <p>Conclusion</p> <p>Overall, alterations in APC priming and activation lead to delayed production of cytokines and chemokines in the lungs that ultimately affected the infiltration of immune cells following influenza infection. This resulted in delayed activation of the adaptive immune response and subsequent delay in clearance of virus and prolonged illness in aged animals. Since the elderly are the fastest growing segment of the population in developed countries, a better understanding of the changes that occur in the immune system during the aging process is a priority for the development of new vaccines and adjuvants to improve the immune responses in this population.</p
    corecore