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Abstract
Background: Tachykinins (TK), such as substance P, and their neurokinin receptors which are
ubiquitously expressed in the human urinary tract, represent an endogenous system regulating
bladder inflammatory, immune responses, and visceral hypersensitivity. Increasing evidence
correlates alterations in the TK system with urinary tract diseases such as neurogenic bladders,
outflow obstruction, idiopathic detrusor instability, and interstitial cystitis. However, despite
promising effects in animal models, there seems to be no published clinical study showing that NK-
receptor antagonists are an effective treatment of pain in general or urinary tract disorders, such
as detrusor overactivity. In order to search for therapeutic targets that could block the tachykinin
system, we set forth to determine the regulatory network downstream of NK1 receptor activation.
First, NK1R-dependent transcripts were determined and used to query known databases for their
respective transcription regulatory elements (TREs).

Methods: An expression analysis was performed using urinary bladders isolated from sensitized
wild type (WT) and NK1R-/- mice that were stimulated with saline, LPS, or antigen to provoke
inflammation. Based on cDNA array results, NK1R-dependent genes were selected. PAINT
software was used to query TRANSFAC database and to retrieve upstream TREs that were
confirmed by electrophoretic mobility shift assays.

Results: The regulatory network of TREs driving NK1R-dependent genes presented cRel in a
central position driving 22% of all genes, followed by AP-1, NF-kappaB, v-Myb, CRE-BP1/c-Jun, USF,
Pax-6, Efr-1, Egr-3, and AREB6. A comparison between NK1R-dependent and NK1R-independent
genes revealed Nkx-2.5 as a unique discriminator. In the presence of NK1R, Nkx2-5 _01 was
significantly correlated with 36 transcripts which included several candidates for mediating bladder
development (FGF) and inflammation (PAR-3, IL-1R, IL-6, α-NGF, TSP2). In the absence of NK1R,
the matrix Nkx2-5_02 had a predominant participation driving 8 transcripts, which includes those
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involved in cancer (EYA1, Trail, HSF1, and ELK-1), smooth-to-skeletal muscle trans-differentiation,
and Z01, a tight-junction protein, expression. Electrophoretic mobility shift assays confirmed that,
in the mouse urinary bladder, activation of NK1R by substance P (SP) induces both NKx-2.5 and
NF-kappaB translocations.

Conclusion: This is the first report describing a role for Nkx2.5 in the urinary tract. As Nkx2.5
is the unique discriminator of NK1R-modulated inflammation, it can be imagined that in the near
future, new based therapies selective for controlling Nkx2.5 activity in the urinary tract may be
used in the treatment in a number of bladder disorders.

Background
Substance P belongs to the tachykinins (TKs) family of
peptides involved in the peripheral and central regulation
of urinary functions [1] through the stimulation of neuro-
kinin (NK) NK1, NK2, and NK3 receptors [2,3]. At the uri-
nary system level, TKs stimulate smooth muscle tone,
ureteric peristalsis and bladder contractions, initiate neu-
rogenic inflammation, and trigger local and spinal
reflexes [4] aimed to maintain organ functions in emer-
gency conditions [2]. The most studied effects produced
by TKs in these systems are smooth muscle contraction [5-
9], modulation of inflammation [10,11], mucus secre-
tion, and recruitment/activation of immune cells [12]. At
least in the mouse bladder, TKs are spontaneously
released and their levels maintained low by the activity of
neutral-endopeptidase [13]. Indeed, null deletion of NEP
in mice leads to spontaneous plasma extravasation in the
urinary bladder that was reversed by a recombinant of
NK1 and bradykinin B2 receptors antagonists [14].

In the urinary tract, the major recognized sources of TKs
are the primary afferent neurons expressing transient
receptor potential vanilloid-1 receptors, which have the
unique property of releasing transmitters both in the
periphery (efferent function) and the spinal cord (afferent
function) upon stimulation [2].

NK1R are the predominant subtype involved in inflamma-
tion in general [3] and may underlie persistent pain, such
as that observed during chronic bladder inflammation
[15]. SP activation of NK1R [3] induces a sequential acti-
vation of signaling pathways leading to the production of
pro-inflammatory mediators [10,16,17] and pro-inflam-
matory cytokines such as macrophage migration inhibi-
tory factor (MIF) that plays a major role in bladder
inflammation [18].

The use of NK1R-/- mice confirmed a central role for SP in
models of bladder inflammation [19]. Indeed, NK1R-/-

mice do not mount bladder inflammatory response to
antigen-complex stimulation and that NK1Rs are required
in cystitis [19]. In this context, an up-regulation of NK1R
was found in bladder inflammation [20] and bladder
biopsies from cystitis patients present an increase in NK1R

density [21], nerves [22], and SP-containing fibers [23].
Furthermore, the finding that sensory C fibers desensitiza-
tion decreases urinary bladder hyperreflexia further sup-
ports a role for sensory peptides in this disorder [24]. In
fact, NK1R antagonists reduce detrusor hyperreflexia
caused by chemical [25] and bacterial cystitis [26], and
decrease cyclophosphamide-induced inflammation [27].
In addition, changes in SP expression following cystitis
may contribute to the altered visceral sensation (allody-
nia) and/or urinary bladder hyperreflexia in the clinical
syndrome, interstitial cystitis [4].

The bulk of data obtained in experimental animal models
suggests that TKs could contribute to the genesis of symp-
toms accompanying various diseases of the urinary tract,
which includes cystitis and incontinence [28]. Indeed, a
significant increase in the density of suburothelial, SP-
containing nerves was found in patients with idiopathic
detrusor overactivity, compared with stable controls
[29,30]. Therefore, it cannot be excluded that peripheral
tachykinins may be involved in pathophysiologic afferent
signaling associated with detrusor overactivity [28]. How-
ever, despite promising effects in animal models, there
seems to be no published clinical study showing that NK-
receptor antagonists are an effective treatment of pain [31]
or overactive bladder disease [28]. In addition, despite the
known existence of NK2 receptors in the human detrusor,
NK2 receptor antagonist does not block the non-choliner-
gic contraction in unstable human bladder [32].

Therefore, in order to search for putative therapeutic tar-
gets that could be manipulated to reduce the influence of
the tachykinin system, we set forth to determine the regu-
latory network downstream of NK1R activation. This net-
work is composed of genes and the transcriptional
regulatory elements (TREs) that are putative binding sites
for the transcription factors. In this way, we could define
not only genes downstream of NK1R activation but also
the regulators of their expression. This is based on the fact
that when active transcription factors associate with TREs
of their target genes, they can function to specifically
repress (down-regulate) or induce (up-regulate) synthesis
of the corresponding RNA. The overall hypothesis is that
genes sharing the same TREs can be associated in a molec-
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ular network that would represent key pharmacological
targets for modulating the influence of tachykinins in
bladder diseases.

For this purpose, we used a combination of cDNA array
and in silico analysis of TREs, as described previously [33].
cDNA array analysis defined the interactome of NK1-
dependent genes by querying a web-based entry tool
developed by Ingenuity Systems Inc [34]. Next, we
uploaded the sequence of NK1-dependent genes into
PAINT software and the respective TREs were identified
using MATCH® tool in the TRANSFAC Professional data-
base. Genes and TREs were assembled in regulatory net-
works and selected TREs were confirmed by EMSA.

Methods
Animals
All animal experimentation described here was performed
in conformity with the "Guiding Principles for Research
Involving Animals and Human Beings (OUHSC Animal
Care & Use Committee protocol #00-109 and #00-108).
Groups of ten to twelve-week old female mice were used
in these experiments. NK1R-/- and wild type (WT, C57BL6)
littermate control mice were generated by Dr. Norma P.
Gerard. The colonies at OUHSC were genotyped as
described previously [35].

Antigen sensitization protocol
All mice in this study were sensitized with 1 μg DNP4-
human serum albumin (HSA) in 1 mg alum on days 0, 7,
14, and 21, intraperitoneally (i.p.). In normal mice, this
protocol induces sustained levels of IgE antibodies up to
56 days post-sensitization [36]. One week after the last
sensitization, cystitis was induced. Briefly, sensitized WT
and NK1R-/- mice were anesthetized (ketamine 40 mg/kg
and xylazine 2.5 mg/kg, i.p.), then transurethrally cathe-
terized (24 Ga.; 3/4 in; Angiocath, Becton Dickson, Sandy,
Utah), and the urine was drained by applying slight digital
pressure to the lower abdomen. The urinary bladders were
instilled with 200 μl of pyrogen-free saline or DNP4-OVA
(1 μg/ml). One, four, and twenty-four hours after instilla-
tion, mice were sacrificed with pentobarbital (100 mg/kg,
i.p.) and bladders were removed rapidly.

Alterations at histological level
Previous results from our laboratory demonstrated a man-
datory role of NK1R on antigen-induced cystitis [19,37].
In the present work, we also investigated whether NK1Rs
are important for both SP- and LPS-induced cystitis. For
this purpose, an additional group of NK1R-/- and wild type
(WT, C57BL6) were anesthetized as described above and
challenged intravesically with 200 μl of pyrogen-free
saline, SP (10 μM), or Escherichia coli LPS strain 055:B5
(Sigma, St. Louis, MO; 100 μg/ml). Twenty-four hours
after instillation, mice were euthanized with pentobarbi-

tal (200 mg/kg, i.p.), and the bladders were removed rap-
idly for evaluation of inflammatory cell infiltrates and the
presence of interstitial edema. A semi-quantitative score
using defined criteria of inflammation severity was used
to evaluate cystitis [37]. A cross-section of bladder wall
was fixed in formalin, dehydrated in graded alcohol and
xylene, embedded in paraffin, and cut serially into four 5-
μm sections (8 μm apart) to be stained with hematoxy-
linand eosin (H&E) and Giemsa. H&E stained sections
were visualized under microscope (Eclipse E600, Nikon,
Lewisville, TX). All tissues were photographed at room
temperature by a digital camera (DXM1200; Nikon).
Exposure times were held constant when acquiring images
from different groups. Images were analyzed with Image-
Pro Analyzer® (Media Cybernetics Inc.; Silver Spring, MD
20910). The severity of lesions in the urinary bladder was
graded as follows: 1+, mild (infiltration of 0–10 neu-
trophils/cross-section in the lamina propria, and little or
no interstitial edema); 2+, moderate(infiltration of 10–20
neutrophils/cross-section in the lamina propria, and
moderate interstitial edema); 3+, severe (diffuse infiltra-
tion of >20 neutrophils/cross-section in the lamina pro-
pria and severe interstitial edema) [19,37,38].
Identification of mast cells was performed in Giemsa-
stained sections [37].

Minimum information about microarray experiments – 
MIAME [39]
a. Objective
To determine the time course of gene-expression in con-
trol and antigen-inflamed wild type and NK1R-/- mice.

b. Array design
Mouse 5K Arrays (Clontech, Palo Alto, CA, Cat.
#GPL151), for a complete list of genes in this array, please
access Gene Expression Omnibus, GEO [40].

c. Animal numbers
Female WT and NK1R-/- mice were instilled with antigen
(in sensitized mice), or saline. At 1, 4, and 24 hours fol-
lowing stimulation, the urinary bladders were randomly
distributed into the following groups: a) RNA extraction
(n = 3), b) replicate of RNA extraction (n = 3), and c) mor-
phological analysis (n = 6).

d. Sample preparation for cDNA expression arrays
Three bladders from each group were homogenized
together in Ultraspec RNA solution (Biotecx Laboratories
Inc. Houston, TX) for isolation and purification of total
RNA. Mouse bladders were pooled to ensure enough RNA
for gene array analysis. The justification for this approach
is that there is not enough RNA in a single mouse bladder
for performing cDNA array experiments, and the step of
purification reduces the amount of total RNA. RNA was
DNase-treated according to manufacturer's instructions
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(Clontech Laboratories, Palo Alto, CA), and the quality of
10 μg was evaluated by denaturing formaldehyde/agarose
gel electrophoresis.

d. Mouse cDNA expression arrays
cDNA probes were prepared from DNase-treated RNAs
obtained from each of the experiments. Five μg of DNase-
treated RNA was reverse-transcribed to cDNA and labeled
with [α-32P]dATP, according to the manufacturer's proto-
col (Clontech, Palo Alto, CA). The radioactively labeled
complex cDNA probes were hybridized overnight to
Atlas™ Mouse 5K Arrays (Clontech, Palo Alto, CA) using
ExpressHyb™ hybridization solution with continuous agi-
tation at 68°C. After two high-stringency washes, the
hybridized membranes were exposed (at room tempera-
ture) to an ST Cyclone phosphor screen overnight. Spots
on the arrays were quantified by BD AtlasImage™ 2.7 soft-
ware (Clontech, Palo Alto, CA). The results were placed in
an Excel spreadsheet.

f. Data normalization and analysis
Data was normalized by linear regression analysis using
only genes expressed above background, as described
[11,41], and the ratio of gene-expression between anti-
gen- and saline-challenge was obtained. NK1R-dependent
genes were selected according to the following criterion: a.
In tissues isolated from WT mice, the expression of a par-
ticular gene should be up-regulated (ratio between anti-
gen- and saline-treated >3.0) in at least one of the time
points (1, 4, and 24 hours post challenged); b. in tissues
isolated from NK1R-/- mice, the expression of same gene
should not be altered by antigen-challenge in any of the
time points.

g. Database submission of microarray data
The microarray data was prepared according to "mini-
mum information about a microarray experiment"
(MIAME) recommendations [39], has been deposited in
the Gene Expression Omnibus (GEO) database and can
be retrieved with GEO accession number GSE2821 [42].

Ingenuity pathways analysis
We used a novel approach [34] to fully annotate and rep-
resent NK1R-dependent genes by using the Ingenuity
Pathways Analysis tool [43]. Using Ingenuity knowledge
base network, we identified specific and canonical path-
ways downstream of NK1R activation.

Analysis of transcriptional regulatory elements (TREs)
We employed a bioinformatics approach to hypothesize
functionally relevant transcriptional regulatory elements
(TREs) of NK1R-dependent and -independent genes. The
regulatory network was determined by a combination of
micro array-selected transcripts and PAINT 3.3 [44], avail-
able online [45], to query the transcription factor database

(TRANSFAC) [46]. PAINT 3.3 was employed to examine
2000 base pairs of regulatory regions upstream of the tran-
scriptional start site of each differentially expressed gene
detected with the microarray. PAINT is a suite of bioinfor-
matics and computational tools that integrate functional
genomics information, as is the case of our microarray-
based gene expression data, with genomic sequence and
TRE data to derive hypotheses on the TREs relevant to the
biological function under study.

Genbank accession numbers were used as the gene identi-
fiers in PAINT test files. Over-representation of TREs in the
matrix was calculated at levels of 0 < p <= 0.01 and 0.01 <
p < 0.05 when compared to the reference (TREs regulating
all genes in the original array). Employing the microarray
accounts for any 'bias' present in the genes on the micro-
array relative to entire genome, nd guards from incorrectly
concluding that certain TREs are relevant to the current
experiment. The TRE hypotheses were generated from sta-
tistical enrichment analysis and were defined as those
TREs that are significantly enriched such as NK1R-depend-
ent and -independent genes, over random occurrence in
the gene groups [44].

Electrophoretic mobility shift assays (EMSA)
Anesthetized C57BL6 female mice were instilled with 200
μl of saline or SP (10 μM) and bladders were removed 2,
6, and 24 hours after instillation. In one additional group
(zero hours), the urinary bladders were removed without
instillation. Urinary bladders were placed in cold phos-
phate buffered saline (0°C), containing peptidase inhibi-
tors (aprotinin, pepstatin, leupeptin at 0.01 mg/ml,) and
the mucosa was dissected away from the muscle, as
described previously [33]. Nuclear proteins were extracted
and used for electrophoretic mobility shift assay for Nkx-
2.5 and NF-kappaB.

NF-kappaB EMSA
The NF-kappaB probe was constructed by annealing com-
plementary synthetic oligonucleotides (5' GAT CAT GGG
GAA TCC CCA 3'). Annealed probes were end-labeled
with [α-32P] ATP (3000 Ci/mmole; GE Healthcare) and T4
polynucleotide kinase (New England Biolabs), and then
purified using a G-50 column (GE Healthcare). Nuclear
extracts (10 μg) were incubated with 1 ng of [32P] NF-kap-
paB double-stranded probe in 20 μl 20 mM HEPES, 70
mM KCl, 2 mM DTT, 0.01% NP-40, 4% Ficoll, 1 mg/ml
BSA, and 1.4 μg poly d(I-C). For competition reactions, a
50-fold excess of unlabelled NF-kappaB probe was added
to the reaction mixture, and it was incubated at room tem-
perature for 5 minutes before the addition of the [32P] NF-
kappaB double-stranded probe. Reaction mixtures were
incubated for 20 minutes at room temperature. DNA-pro-
tein complexes were resolved on a non-denaturing 6%
polyacrylamide gel at 200 V for 3 hours in 0.5 TBE (45
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mM Tris-borate and 1 mM EDTA). Gels were vacuum-
dried and visualized on Kodak Biomax MS Film and
quantified using ImageJ Software (NIH) and statistical dif-
ferences were determined using GraphPad Prism Software
(GraphPad Software, San Diego, CA).

Nkx-2.5 EMSA
Electrophoretic mobility shift assays for Nkx-2.5 were per-
formed using a non-radioactive Gel Shift Kit (Panomics,
Redwood City, CA) according to the experimental proce-
dures provided by the manufacturer. Briefly, nuclear
extracts (5 μg) were incubated with biotinylated Nkx-2.5
probe in Binding Buffer with poly d(I-C). For competition
reactions, an excess of unlabelled Nkx-2.5 probe was
added to the reaction mixture and it was incubated at
room temperature for 5 minutes before the addition of
the biotinylated Nkx-2.5 probe. Reaction mixtures were
incubated for 30 minutes at 20°C. DNA-protein com-
plexes were resolved on a non-denaturing 6% polyacryla-
mide gel at 200 V for 2 hours in 0.5× TBE (45 mM Tris-
borate and 1 mM EDTA). The gel was then transferred
onto a 0.45 μm Nytran SuperCharge membrane (Sch-
leicher & Schuell, Keene, NH) at 300 mA for 30 minutes
in 0.5× TBE. The blot was dried for 60 minutes at 80°C
and then UV cross-linked for 3 minutes. After blocking,
the blot was incubated with Streptavidin-HRP and devel-
oped using the substrate solutions included in the kit.
Blots were visualized on Pierce CL-XPosure film (Pierce,
Rockford, IL). Bands were quantified using ImageJ Soft-
ware (NIH) and statistical differences were determined
using GraphPad Prism Software (GraphPad Software, San
Diego, CA). The sequence for the NKx-2.5 motif-contain-
ing probe, not provided by the manufacturer, is 5' AAA
CAA GTC ATA ATA GGA AGC A 3'.

Results
Essential role of NK1R in cystitis
Previous results from our laboratory demonstrated a man-
datory role of NK1R on antigen-induced cystitis [19,37].
In the present work we also investigated whether NK1Rs
are important for both SP- and LPS-induced cystitis. In
contrast to mice treated with saline (Figure 1A), instilla-
tion of LPS into the bladder of wild type mice leads to
inflammation characterized by edema (Figure 1B; black
line delimits the area of sub-epithelial edema) and infil-
tration of inflammatory cells (Figure 1D; black arrows
indicate PMNs). In contrast, the urinary bladders of NK1R-
knockout mice failed to mount an inflammatory response
to LPS (Figures 1C and 1E) despite the capacity of LPS to
induce urothelial cell injury, as indicated by intra-cyto-
plasmatic vacuolization [47] (Figure 1E; black circles).
Similar results were obtained with WT mice that mounted
an inflammatory reaction to intravesicall instillation of SP
as seem in H&E (Figure 2A and 2C) and Giemsa stained
(Figure 2E) sections. NK1R-knockout failed to mount an

inflammatory response to SP (Figures 2B, 2D, and 2F)
with a reduced number of migrating inflammatory cells
but presenting visible resident mast cells (Figure 2F; black
line). Figure 3 presents the quantification of the results
here described. In conclusion, these results extend our
previous observation of a mandatory role for NK1R in
antigen-induced cystitis to other pro-inflammatory medi-
ators.

NK1-dependent genes
Two hundred and nine genes fulfilled the established cri-
teria (see material and methods) and were considered
NK1R-dependent. In contrast, 236 genes were found to be
up-regulated secondary to antigen challenge in tissues iso-
lated from WT and NK1R-/- mice and, therefore, were con-
sidered to be NK1R-independent.

NK1-dependent transcriptional regulatory elements
PAINT 3.3 was employed to examine 2000 base pairs of
regulatory regions upstream of the transcriptional start
site of each differentially expressed gene from the micro-
array expression data. Genbank accession numbers were
used as gene identifiers in PAINT input files. For the
NK1R-dependent genes, out of a total of 209 genes from
the expression analysis, only 153 genes had correspond-
ing upstream sequence information owing to the incom-
plete nature of genomic annotation. A total of 87 TREs
were identified on these sequences using MATCH® tool in
the TRANSFAC Professional database. Similarly, for the
NK1R-independent genes, only 188 promoters were
retrieved for the 236 genes from expression analysis. A
total of 88 TREs were identified on these sequences using
MATCH®. These TREs were examined in the enrichment
analysis to derive regulatory network hypotheses. The
resulting candidate interaction network can be visualized
as an interaction matrix where the individual elements of
the matrix are color-coded based on the p-values for statis-
tical enrichment. A p-value threshold of 0.07 was used to
filter the enrichment analysis results to derive the regula-
tory network hypotheses. These results are shown in Fig-
ure 4 for NK1R-dependent genes and in Figure 5 for NK1R-
independent genes.

Regulatory network downstream of NK1R activation
Figure 6 depicts the hypothesized regulatory network cor-
responding to the NK1R-dependent genes whose TRE were
found to be over-represented (0.01 < p < 0.05) in this set
when compared to a reference (all genes in the array). cRel
was the predominant TRE, driving 22% of the NK1R-
dependent genes. The order of predominance for the dif-
ferent TREs was: cRel, v-Myb, CRE-BP1/c-Jun, USF, AP-
1_Q2, Pax-6, AP-1_C, NF-kappaB_Q6, Efr-1, Egr-3, and
AREB6 (Figure 6 and Table 1 [additional file 1]).
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Ingenuity pathways analysis
In order to make sense of the vast information generated
by cDNA array expression, we used the recently developed
Ingenuity Pathways Knowledge Base [34] to design path-

ways of NK1R-dependent genes and to query canonic
pathways regarding the relative importance of each of the
transcripts (Figure 7). As a result, genes were localized to
different compartments depending on the predominant

A-E. Comparison of bladder inflammatory responses in wild type (C57BL6) and NK1-R knockout miceFigure 1
A-E. Comparison of bladder inflammatory responses in wild type (C57BL6) and NK1-R knockout mice. Repre-
sentative photomicrographs of bladder inflammation in mice treated intravesically with 200 μl of pyrogen-free saline (1A), LPS 
(100 μg/ml; 1B, 1C, 1D, and 1E), or SP (10 μM; 2A, 2B, 2C, 2D, 2E, and 2F). The urinary bladders were removed 24 
hours after bladder instillation and processed for histological stains: H&E (1 A-E and 2A-D) and Giemsa (2E and 2F), (n = 6).
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expression of the protein they encoded (Figure 7). In this
way, four compartments are depicted: extracellular space,
plasma membrane, cytoplasm, and nucleus. According to
their primary function, ingenuity grouped NK1-depend-

ent genes into 4 different networks: cell morphology, cell
cycle, inflammation, and cell death. However, a strong
degree of overlapping between cell morphology, cell
cycle, cell death, and cancer was observed. In contrast,

A-F. Comparison of bladder inflammatory responses in wild type (C57BL6) and NK1-R knockout miceFigure 2
A-F. Comparison of bladder inflammatory responses in wild type (C57BL6) and NK1-R knockout mice. Repre-
sentative photomicrographs of bladder inflammation in mice treated intravesically with 200 μl of pyrogen-free saline (1A), LPS 
(100 μg/ml; 1B, 1C, 1D, and 1E), or SP (10 μM; 2A, 2B, 2C, 2D, 2E, and 2F). The urinary bladders were removed 24 
hours after bladder instillation and processed for histological stains: H&E (1 A-E and 2A-D) and Giemsa (2E and 2F), (n = 6).
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genes involved in inflammation were also listed to be
involved in embryonic development. The NK1R-depend-
ent genes were significantly correlated with the following
canonical signaling pathways: p38 MAPK, NF-kappaB,
PPAR, IL-6, death receptor, apoptosis, and SAPK/JNK
(Table 2, [additional file 2]).

Overall NK1R-dependent genes were classified following
the biological processes with which they are involved (GO
anthology): apoptosis (GZMA, TNFRSF1B, TNFRSF1A,
TRAF3, NOS2A, and BID); cell adhesion/hyaluronic acid
binding (CD44 and AGC1); cell cycle (CCND2 and
CCNG1); cell-cell signaling (FGF11 and GJA7); cytokine-
sis (CDC42 and KIF1B); development (FMR2); extracellu-
lar transporters & carriers (APOE); G-protein coupled
receptors (GNA13 and PTGIR); growth factors (MXD1);
heat shock proteins (PRNP, HSPH1, and HSPD1);
immune response (BST-1, CTSW, and IL1R1); interferons
(INFGR1) intracellular kinases (WBP6); intracellular
transducers (MAP3K7); kinase activators & inhibitors
(YWHAH); membrane channels (KCNAB1, KCNJ12,
KCNQ1, and SLC30A4); nucleotide metabolism
(PCSK1); oncogenes & tumor suppressors (BRCA1,
MAP3K8, RET, VIL2, FLI1, MET, NF2, and VEGFR1);
receptor mediated endocytosis (DAB2); receptor tyrosine
kinase (EPHA2); regulation of transcription (NEUROD6);
serotonin biosynthesis (YTPH1); symporters & antiport-
ers (SLC16A1 and SLC1A1); transcription activators &

repressors (FOXA1, HSF1, IER2, and NR1H2); and synap-
tic transmission (GRID1).

Comparing NK1R-dependent and -independent genes
The whole set of genes that were up-regulated at least 3-
fold during inflammation including NK1R-dependent and
NK1R-independent genes were analyzed in PAINT. A p-
value threshold of 0.05 was used to derive statistically
enriched regulatory elements in these two gene groups
(Figure 8). The enrichment in this case was obtained by
using the interaction matrix for the combined gene list as
a reference. This enabled us to contrast the two gene
groups relative to each other and characterize those regu-
latory elements that are specific to one group or the other.
We observed differential enrichment of several regulatory
elements including over-expression of AP1 specific in the
NK1R-dependent genes, as we previously suggested [41]
(Figure 8). However, the most striking finding of this anal-
ysis was the revelation that Nkx-2.5, a murine homeo box
gene, is a unique discriminator of NK1R-dependent genes.
Nkx-2.5 matrix _01 was found over represented in the set
of NK1R-independent transcripts (colored in red) and
under-represented or suppressed in the set of NK1R-
dependent TREs (colored in cyan). In contrast, Nkx-2.5
matrix _02 had the completely opposite behavior since it
was over-represented in NK1R-dependent and under-rep-
resented in the NK1R-independent set. Table 3 [additional
file 3] lists all genes under the control of both Nkx-2.5

Quantification of inflammationFigure 3
Quantification of inflammation. Wild type (C57BL6) and NK1-R knockout mice were treated intravesically with 200 μl of 
pyrogen-free saline, LPS (100 μg/ml), or SP (10 μM). The urinary bladders were removed 24 hours after bladder instillation and 
processed for histological stains for quantification of inflammation. A = Grade of edema and B = Grade of polymorphonuclear 
[PMNs] leukocytes (see material and methods).

A B
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PAINT 3.3 representation of an interaction matrix for NK1R-dependent genes and respective TREsFigure 4
PAINT 3.3 representation of an interaction matrix for NK1R-dependent genes and respective TREs. PAINT 3.3 
was employed to examine 2000 base pairs of regulatory regions upstream of the transcriptional start site of each differentially 
expressed gene from the microarray expression data. Genbank accession numbers were used as the gene identifiers in PAINT 
input files. Individual elements of the matrix are colored by the significance of the p-values: over-representation in the matrix is 
indicated in red, under-representation is indicated in cyan, and the TREs that are neither significantly over nor under-repre-
sented in the matrix are colored in gray.
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PAINT 3. representation of an interaction matrix for NK1R-independent genes and respective TREsFigure 5
PAINT 3.3 representation of an interaction matrix for NK1R-independent genes and respective TREs. PAINT 
3.3 was employed to examine 2000 base pairs of regulatory regions upstream of the transcriptional start site of each differen-
tially expressed gene from the microarray expression data. Genbank accession numbers were used as the gene identifiers in 
PAINT input files. Individual elements of the matrix are colored by the significance of the p-values: over-representation in the 
matrix is indicated in red, under-representation is indicated in cyan, and the TREs that are neither significantly over nor under-
represented in the matrix are colored in gray.
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matrix _01 and matrix _02. With the exception of A10
(L21027) and EGF (J00380) that were associated with
both matrixes, a unique set of genes is correlated with
Nkx-2.5 matrix _01 and Nkx-2.5 matrix _02.

Intravesical instillation of SP stimulates NF-kappaB and 
Nkx-2.5 translocation in the bladder mucosa
To determine whether activation of NK1R increases the
transcriptional activities of NF-kappaB and Nkx-2.5, an
EMSA was performed. Results show that instillation of SP
into the mouse bladder increased the amount of shifted
Nkx-2.5 and NF-kappaB probes that peaked at 24 hours
post stimulation (Figure 9 A-D). Because of the high level
of expression of both NKx-2.5 and NF-kappaB in the blad-
ders pre-treated with saline, in an additional group, uri-
nary bladders were removed without insertion of the

catheter or fluid instillation. Interestingly, in this group (0
hours) almost the same degree of constitutive transcrip-
tional activities was observed.

Discussion
It has to be taken into consideration that the approach of
this study permitted the generation of new testable
hypothesis rather than the more traditional hypothesis-
driven research. Indeed, the major question being
answered by this work is what TREs can be therapeutically
targeted for reducing the influence of tachykinins in blad-
der disorders? The method introduced here, supplements
the standard procedure of multiple paired comparisons
used in microarray analysis by associating the expression
level of each gene in the experimental group with a family
transcription regulatory elements[33] and to compare

Regulatory Network downstream NK1 receptor activationFigure 6
Regulatory Network downstream NK1 receptor activation. Hypothesized regulatory network corresponding to the 
NK1R-dependent genes and respective TREs. A complete list of genes and TREs is summarized on Table 1 (Additional file 1).
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with the occurrence of each TRE in a reference file (all
genes in the array). This bottom-up approach builds
mechanistic models for each individual case, e.g., identi-
fying the binding sites for selected genes and their respec-
tive TREs [48], then specifies the role of each TRE in the
network generating a testable hypothesis for the network
downstream of NK1R activation. Next, we used EMSA to
confirm that selected TREs (NF-kappaB and NKx-2.5) are
indeed part of the molecular network downstream of
NK1R activation.

An extended family of TREs was significantly correlated
with NK1R-dependent genes. Those included c-Rel, NF-
kappaB_Q6, PAX-6, CREB_01, CRE-BP1/c-Jun, and v-Myb
(Figure 4). However, most of the studies on transcription
regulatory elements in urology are related to oncology,

which makes it difficult to further illustrate the clinical rel-
evance of our findings. Therefore, we are discussing only
the most relevant TREs that modulate bladder inflamma-
tory responses to SP.

AP1 was among the NK1R-dependent TREs. We have pro-
vided evidence for a predominant role for AP1 controlling
highly expressed NK1R-dependent genes [41]. In the
present work, we confirmed the regulatory relationships
between AP1 (AP1_Q2 and AP1_C) and NK1R-dependent
genes. It is known that the activation of MAPK (JNK, p38)
and NF-kappaB signaling pathways leads to the activation
of AP-1 and, consequently, the inflammation [49]. The
present results extend these findings to the urinary blad-
der where these pathways can be explored as potential
therapeutic targets to decrease the symptoms of cystitis.

Ingenuity Pathways annotation of NK1R-dependent genesFigure 7
Ingenuity Pathways annotation of NK1R-dependent genes.
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Direct comparison of TREs driving NK1R-dependent and-independent genesFigure 8
Direct comparison of TREs driving NK1R-dependent and-independent genes. The whole set of genes that were up-
regulated at least 3-fold during bladder inflammation were analyzed in PAINT 3.3. These genes were divided into two groups: 
NK1R-dependent and NK1R-independent. A p-value threshold of 0.05 was used to derive statistically enriched regulatory ele-
ments in these two gene groups. Note that AP-1 is over represented in the set of NK1R-dependent genes, whereas it is not 
significantly correlated with NK1R-independent transcripts. Also note that Nkx-2.5 matrix _01 was found over represented in 
the set of NK1R-independent transcripts (colored in red) and under-represented or suppressed in the set of NK1R-dependent 
TRs (colored in cyan). In contrast, Nkx-2.5 matrix _02 had the completely opposite behavior.
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NF-kappaB is believed to trigger both the onset and the
resolution of inflammation. NF-kappaB activity is corre-
lated with bladder cancer [50-52] and bladder urothelial

cells respond to insults with a translocation of NF-kappaB
[53] leading ultimately to an increased NK1R expression
[54]. Our present work confirms previous indication that

Intravesical SP stimulates NKx-2.5 and NF-kappaB activityFigure 9
Intravesical SP stimulates NKx-2.5 and NF-kappaB activity. Anesthetized mice were instilled with 200 μl of saline or 
SP (10 μM) and bladders were removed 2, 6, and 24 hours after instillation. In one additional group (zero hours) the urinary 
bladders were removed without instillation. Urinary bladders were placed in cold phosphate buffered saline (0°C) containing 
protease inhibitors, and the mucosa was dissected away from the muscle. Nuclear proteins were extracted and used for elec-
trophoretic mobility shift assay for NKx-2.5 (A) and NF-kappaB (C). Amount of shifted Nkx-2.5 (B) and NF-kappaB (D) 
probes were quantified as described in materials and methods.
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Tachykinins, such as SP, activate NF-kappaB translocation
[55,56]. Indeed, in the urinary bladder, activation of
NK1R by SP induces NF-kappaB translocation, as seen by
EMSA results (Figure 9), and up-regulation of pro-inflam-
matory genes, such as the encoding prostaglandin I2
receptor (Figure 6).

Another TRE over-expressed in the NK1R-dependent clus-
ter was the upstream stimulatory factor (USF). Although
widely expressed, USF can mediate tissue-specific tran-
scripts. USF is stimulated by glucose in murine mesangial
cells, binds to TGF-β1 promoter, contributes to TGF-β1
expression, and may play a role in diabetes-related gene
regulation in the kidney [57].

However, the most impressive switch between NK1R-
dependent and independent transcripts was the one
observed with two different matrixes of Nkx-2.5 (_01 and
_02). Both Nkx-2.5_01 and _02 are binding sites derived
from mouse sequences [58,59]. Nkx-2.5 is a murine
homeobox named tinman homeodomain factor and is
considered to be a new member of the sub-family of
homeobox genes related to the Drosophila [58]. Nkx-2.5
is proposed as a valuable marker in the analysis of meso-
derm development [59]. It was first described as an essen-
tial transcription factor for normal heart morphogenesis,
myogenesis, and function [60]. However, more recently it
was shown that Nkx-2.5 is required for the expression of
atrial natriuretic peptide [61] and, along with NF-kappaB,
is part of the brain natriuretic peptide promoter [62]. Out-
side of the heart, this element is important in vessel
remodeling [63], skeletal myogenesis [64], and pyloric
sphincter development [65]. Other sites of Nkx-2.5
expression include pharyngeal endoderm and its deriva-
tives, branchial arch epithelium, stomach, spleen, pan-
creas and liver [66].

To our knowledge, this is the first report describing a role
for Nkx-2.5 in the urinary tract. In the presence of NK1R,
Nkx-2.5 _01 was significantly correlated with 36 tran-
scripts which included several candidates for mediating
bladder development (FGF) and inflammation (PAR-3,
IL-1R, IL-6, NGF, TSP2) (Table 3, [additional file 3]). In
the absence of NK1R, the matrix _02 had a predominant
participation driving 8 transcripts, which includes those
involved in cancer (EYA1, Trail, HSF, and ELK-1), smooth-
to-skeletal muscle trans-differentiation, and Z01, a tight-
junction protein, expression (Table 3, [additional file 3]).

An interesting finding was the constitutive translocation
of NKx-2.5 and NF-kappaB in the bladder mucosa. One
possible explanation was that mechanical stimulation
caused by instillation of saline caused the shift. Therefore,
an additional control group was added in which the blad-
der was removed without instillation. This group (0

hours) also presented a certain amount of shifted NKx-2.5
and NF-kappaB probes. An alternative explanation for
these results is that mechanical isolation of the bladder
mucosa caused the translocation of both transcription fac-
tors. We, therefore, generated preliminary results using an
urothelial cell line (J82) which indicated a constitutive
activation of both NF-kappaB and NKx-2.5 in the absence
of overt stimulation (data not shown). Therefore, we sug-
gest that the bladder mucosa/urothelium might present a
constitutive activation of both transcription factors. The
similarity of basal translocation of NKx-2.5 and NF-kap-
paB translocation in the urinary bladder may be related to
an overlap of binding motifs in some genes. Indeed, oth-
ers have shown an overlap of conserved DNA binding
motifs including AP-1 sites, NF-kappaB, GATA, and Nkx-
2.5 in promoter regions of genes, such as MMP13 [67].

Conclusion
This work indicates an overriding participation of NK1R in
bladder inflammation, provides a working model for the
involvement of transcription regulators such as NF-kap-
paB, and Nkx-2.5, and evokes testable hypotheses regard-
ing a role for tachykinins in the urinary tract pathology. It
remains to be determined whether the control of Nkx-2.5
activity by gene silencing or double mutant negative
blockers will ameliorate the clinical manifestations of cys-
titis.
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