9 research outputs found

    Crying and feeding problems in infancy and cognitive outcome in preschool children born at risk : a prospective population study

    Get PDF
    Objective: To investigate whether regulatory problems, i.e., crying and feeding problems in infants > 3 months of age, predict cognitive outcome in preschool children born at risk even when controlled for confounding factors. Methods: A prospective longitudinal study of children born in a geographically defined area in Germany. N = 4427 children of 6705 eligible survivors (66%) participated at all four assessment points (neonatal, 5, 20, and 56 months of age). Excessive crying and feeding problems were measured at 5 months. Mental development was assessed with the Griffiths Scale at 20 months, and cognitive assessments were conducted at 56 months. Neonatal complications, neurological, and psychosocial factors were controlled as confounders in structural equation modeling and analyses of variance. Results: One in five infants suffered from single crying or feeding problems, and 2% had multiple regulatory problems, i.e., combined crying and feeding problems at 5 months. In girls, regulatory problems were directly predictive of lower cognition at 56 months, even when controlled for confounders, whereas in boys, the influence on cognition at 56 months was mediated by low mental development at 20 months. Both in boys and girls, shortened gestational age, neonatal neurological complications, and poor parent-infant relationship were predictive of regulatory problems at 5 months and lower cognition at 56 months. Conclusion: Regulatory problems in infancy have a small but significant adverse effect on cognitive development

    Causal effect of plasminogen activator inhibitor type 1 on coronary heart disease

    Get PDF
    Background--Plasminogen activator inhibitor type 1 (PAI-1) plays an essential role in the fibrinolysis system and thrombosis. Population studies have reported that blood PAI-1 levels are associated with increased risk of coronary heart disease (CHD). However, it is unclear whether the association reflects a causal influence of PAI-1 on CHD risk. Methods and Results--To evaluate the association between PAI-1 and CHD, we applied a 3-step strategy. First, we investigated the observational association between PAI-1 and CHD incidence using a systematic review based on a literature search for PAI-1 and CHD studies. Second, we explored the causal association between PAI-1 and CHD using a Mendelian randomization approach using summary statistics from large genome-wide association studies. Finally, we explored the causal effect of PAI-1 on cardiovascular risk factors including metabolic and subclinical atherosclerosis measures. In the systematic meta-analysis, the highest quantile of blood PAI-1 level was associated with higher CHD risk comparing with the lowest quantile (odds ratio=2.17; 95% CI: 1.53, 3.07) in an age- and sex-adjusted model. The effect size was reduced in studies using a multivariable-adjusted model (odds ratio=1.46; 95% CI: 1.13, 1.88). The Mendelian randomization analyses suggested a causal effect of increased PAI-1 level on CHD risk (odds ratio=1.22 per unit increase of log-transformed PAI-1; 95% CI: 1.01, 1.47). In addition, we also detected a causal effect of PAI-1 on elevating blood glucose and high-density lipoprotein cholesterol. Conclusions--Our study indicates a causal effect of elevated PAI-1 level on CHD risk, which may be mediated by glucose dysfunction

    Genetic associations at 53 loci highlight cell types and biological pathways relevant for kidney function.

    Get PDF
    Reduced glomerular filtration rate defines chronic kidney disease and is associated with cardiovascular and all-cause mortality. We conducted a meta-analysis of genome-wide association studies for estimated glomerular filtration rate (eGFR), combining data across 133,413 individuals with replication in up to 42,166 individuals. We identify 24 new and confirm 29 previously identified loci. Of these 53 loci, 19 associate with eGFR among individuals with diabetes. Using bioinformatics, we show that identified genes at eGFR loci are enriched for expression in kidney tissues and in pathways relevant for kidney development and transmembrane transporter activity, kidney structure, and regulation of glucose metabolism. Chromatin state mapping and DNase I hypersensitivity analyses across adult tissues demonstrate preferential mapping of associated variants to regulatory regions in kidney but not extra-renal tissues. These findings suggest that genetic determinants of eGFR are mediated largely through direct effects within the kidney and highlight important cell types and biological pathways

    The Empirical Basis of Designing Instruction

    Get PDF
    This manuscript discusses results of a preliminary study regarding how experts design instruction. Alumni from a faculty of educational science and technology were asked how they would approach various design tasks. Results revealed some interesting characteristics of the design process in practice. Results are discussed in relation to the empirical status of the development of design models and to adapting current models towards a practice-oriented process of designing instruction. This orientation involves both design content, practical design experience, and design procedures

    Genetic associations at 53 loci highlight cell types and biological pathways relevant for kidney function

    No full text
    Reduced glomerular filtration rate defines chronic kidney disease and is associated with cardiovascular and all-cause mortality. We conducted a meta-analysis of genome-wide association studies for estimated glomerular filtration rate (eGFR), combining data across 133,413 individuals with replication in up to 42,166 individuals. We identify 24 new and confirm 29 previously identified loci. Of these 53 loci, 19 associate with eGFR among individuals with diabetes. Using bioinformatics, we show that identified genes at eGFR loci are enriched for expression in kidney tissues and in pathways relevant for kidney development and transmembrane transporter activity, kidney structure, and regulation of glucose metabolism. Chromatin state mapping and DNase I hypersensitivity analyses across adult tissues demonstrate preferential mapping of associated variants to regulatory regions in kidney but not extra-renal tissues. These findings suggest that genetic determinants of eGFR are mediated largely through direct effects within the kidney and highlight important cell types and biological pathways

    7. Literatur

    No full text
    corecore