92 research outputs found

    Phenomenology of GUT-less Supersymmetry Breaking

    Get PDF
    We study models in which supersymmetry breaking appears at an intermediate scale, M_{in}, below the GUT scale. We assume that the soft supersymmetry-breaking parameters of the MSSM are universal at M_{in}, and analyze the morphology of the constraints from cosmology and collider experiments on the allowed regions of parameter space as M_{in} is reduced from the GUT scale. We present separate analyses of the (m_{1/2},m_0) planes for tan(beta)=10 and tan(beta)=50, as well as a discussion of non-zero trilinear couplings, A_0. Specific scenarios where the gaugino and scalar masses appear to be universal below the GUT scale have been found in mirage-mediation models, which we also address here. We demand that the lightest neutralino be the LSP, and that the relic neutralino density not conflict with measurements by WMAP and other observations. At moderate values of M_{in}, we find that the allowed regions of the (m_{1/2},m_0) plane are squeezed by the requirements of electroweak symmetry breaking and that the lightest neutralino be the LSP, whereas the constraint on the relic density is less severe. At very low M_{in}, the electroweak vacuum conditions become the dominant constraint, and a secondary source of astrophysical cold dark matter would be necessary to explain the measured relic density for nearly all values of the soft SUSY-breaking parameters and tan(beta). We calculate the neutralino-nucleon cross sections for viable scenarios and compare them with the present and projected limits from direct dark matter searches.Comment: 35 pages, 9 figures; typos corrected, references adde

    A consistent analysis of (e,e'p) and (d,3He) experiments

    Full text link
    The apparent discrepancy between spectroscopic factors obtained in (e,e'p) and (d,3He) experiments is investigated. This is performed first for 48Ca(e,e'p) and 48Ca(d,3He) experiments and then for other nuclei. It is shown that the discrepancy disappears if the (d,3He) experiments are re-analyzed with a non-local finite range DWBA analysis with a bound-state wave function that is obtained from (e,e'p) experiments.Comment: 23 pages, 7 figure

    Probing mSUGRA via the Extreme Universe Space Observatory

    Full text link
    An analysis is carried out within mSUGRA of the estimated number of events originating from upward moving ultra-high energy neutralinos that could be detected by the Extreme Universe Space Observatory (EUSO). The analysis exploits a recently proposed technique that differentiates ultra-high energy neutralinos from ultra-high energy neutrinos using their different absorption lengths in the Earth's crust. It is shown that for a significant part of the parameter space, where the neutralino is mostly a Bino and with squark mass 1\sim 1 TeV, EUSO could see ultra-high energy neutralino events with essentially no background. In the energy range 10^9 GeV < E < 10^11 GeV, the unprecedented aperture of EUSO makes the telescope sensitive to neutralino fluxes as low as 1.1 \times 10^{-6} (E/GeV)^{-1.3} GeV^{-1} cm^{-2} yr^{-1} sr^{-1}, at the 95% CL. Such a hard spectrum is characteristic of supermassive particles' NN-body hadronic decay. The case in which the flux of ultra-high energy neutralinos is produced via decay of metastable heavy particles with uniform distribution throughout the universe is analyzed in detail. The normalization of the ratio of the relics' density to their lifetime has been fixed so that the baryon flux produced in the supermassive particle decays contributes to about 1/3 of the events reported by the AGASA Collaboration below 10^{11} GeV, and hence the associated GeV gamma-ray flux is in complete agreement with EGRET data. For this particular case, EUSO will collect between 4 and 5 neutralino events (with 0.3 of background) in ~ 3 yr of running. NASA's planned mission, the Orbiting Wide-angle Light-collectors (OWL), is also briefly discussed in this context.Comment: Some discussion added, final version to be published in Physical Review

    Higgs production in association with top quark pair at e+e- colliders in theories of higher dimensional gravity

    Full text link
    The models of large extra compact dimensions, as suggested by Arkani-Hamed, Dimopoulos and Dvali, predict exciting phenomenological consequences with gravitational interactions becoming strong at the TeV scale. Such theories can be tested at the existing and future colliders. In this paper, we study the contribution of virtual Kaluza-Klein excitations in the process e+ettˉHe^+e^- \to t \bar t H at future linear collider (NLC). We find that the virtual exchange KK gravitons can modify the cross-section σ(e+ettˉH)\sigma(e^+e^- \to t \bar t H) significantly from its Standard Model value and will allow the effective string scale to be probed up to 7.9 TeV.Comment: 10 pages, Latex, 4 postscript figure

    Supersymmetry Without Prejudice at the LHC

    Full text link
    The discovery and exploration of Supersymmetry in a model-independent fashion will be a daunting task due to the large number of soft-breaking parameters in the MSSM. In this paper, we explore the capability of the ATLAS detector at the LHC (s=14\sqrt s=14 TeV, 1 fb1^{-1}) to find SUSY within the 19-dimensional pMSSM subspace of the MSSM using their standard transverse missing energy and long-lived particle searches that were essentially designed for mSUGRA. To this end, we employ a set of 71\sim 71k previously generated model points in the 19-dimensional parameter space that satisfy all of the existing experimental and theoretical constraints. Employing ATLAS-generated SM backgrounds and following their approach in each of 11 missing energy analyses as closely as possible, we explore all of these 7171k model points for a possible SUSY signal. To test our analysis procedure, we first verify that we faithfully reproduce the published ATLAS results for the signal distributions for their benchmark mSUGRA model points. We then show that, requiring all sparticle masses to lie below 1(3) TeV, almost all(two-thirds) of the pMSSM model points are discovered with a significance S>5S>5 in at least one of these 11 analyses assuming a 50\% systematic error on the SM background. If this systematic error can be reduced to only 20\% then this parameter space coverage is increased. These results are indicative that the ATLAS SUSY search strategy is robust under a broad class of Supersymmetric models. We then explore in detail the properties of the kinematically accessible model points which remain unobservable by these search analyses in order to ascertain problematic cases which may arise in general SUSY searches.Comment: 69 pages, 40 figures, Discussion adde

    Search for Neutral Higgs Bosons of the Minimal Supersymmetric Standard Model in e+e- Interactions at sqrt(s) up to 209 GeV

    Get PDF
    A search for the lightest neutral CP-even and neutral CP-odd Higgs bosons of the Minimal Supersymmetric Standard Model is performed using 216.6 pb-1 of data collected with the L3 detector at LEP at centre-of-mass energies between 203 and 209 GeV. No indication of a signal is found. Including our results from lower centre-of-mass energies, lower limits on the Higgs boson masses are set as a function of tan(beta) for several scenarios. For tan(beta) greater than 0.7 they are mh > 84.5 GeV and mA > 86.3 GeV at 95% confidence level

    Formation of dense partonic matter in relativistic nucleus-nucleus collisions at RHIC: Experimental evaluation by the PHENIX collaboration

    Full text link
    Extensive experimental data from high-energy nucleus-nucleus collisions were recorded using the PHENIX detector at the Relativistic Heavy Ion Collider (RHIC). The comprehensive set of measurements from the first three years of RHIC operation includes charged particle multiplicities, transverse energy, yield ratios and spectra of identified hadrons in a wide range of transverse momenta (p_T), elliptic flow, two-particle correlations, non-statistical fluctuations, and suppression of particle production at high p_T. The results are examined with an emphasis on implications for the formation of a new state of dense matter. We find that the state of matter created at RHIC cannot be described in terms of ordinary color neutral hadrons.Comment: 510 authors, 127 pages text, 56 figures, 1 tables, LaTeX. Submitted to Nuclear Physics A as a regular article; v3 has minor changes in response to referee comments. Plain text data tables for the points plotted in figures for this and previous PHENIX publications are (or will be) publicly available at http://www.phenix.bnl.gov/papers.htm

    SUSY Higgs Boson Decays into Scalar Quarks: QCD Corrections

    Get PDF
    In supersymmetric theories, the decays of the neutral CP-even and CP-odd as well as the charged Higgs bosons into scalar quarks, in particular into top and bottom squarks, can be dominant if they are kinematically allowed. We calculate the QCD corrections to these decay modes in the minimal supersymmetric extension of the Standard Model, including all quark mass terms and squark mixing. These corrections turn out to be rather large, altering the decay widths by an amount which can be larger than 50%. The corrections can be either positive or negative, and depend strongly on the mass of the gluino. We also discuss the QCD corrections to the decays of heavy scalar quarks into light scalar quarks and Higgs bosons.Comment: 17 pages, 6 figure

    Approaches to dose finding in neonates, illustrating the variability between neonatal drug development programs

    Get PDF
    Drug dosing in neonates should be based on integrated knowledge concerning the disease to be treated, the physiological characteristics of the neonate, and the pharmacokinetics (PK) and pharmacodynamics (PD) of a given drug. It is critically important that all sources of information be leveraged to optimize dose selection for neonates. Sources may include data from adult studies, pediatric studies, non-clinical (juvenile) animal models, in vitro studies, and in silico models. Depending on the drug development program, each of these modalities could be used to varying degrees and with varying levels of confidence to guide dosing. This paper aims to illustrate the variability between neonatal drug development programs for neonatal diseases that are similar to those seen in other populations (meropenem), neonatal diseases related but not similar to pediatric or adult populations (clopidogrel, thyroid hormone), and diseases unique to neonates (caffeine, surfactant). Extrapolation of efficacy from older children or adults to neonates is infrequently used. Even if a disease process is similar between neonates and children or adults, such as with anti-infectives, additional dosing and safety information will be necessary for labeling, recognizing that dosing in neonates is confounded by maturational PK in addition to body size

    Model-independent analysis of Higgs spin and CP properties in the process e+ettˉΦe^+ e^- \to t \bar t \Phi

    Full text link
    In this paper we investigate methods to study the ttˉt\bar{t} Higgs coupling. The spin and CP properties of a Higgs boson are analysed in a model-independent way in its associated production with a ttˉt\bar{t} pair in high-energy e+ee^+e^- collisions. We study the prospects of establishing the CP quantum numbers of the Higgs boson in the CP-conserving case as well as those of determining the CP-mixing if CP is violated. We explore in this analysis the combined use of the total cross section and its energy dependence, the polarisation asymmetry of the top quark and the up-down asymmetry of the antitop with respect to the top-electron plane. We find that combining all three observables remarkably reduces the error on the determination of the CP properties of the Higgs Yukawa coupling. Furthermore, the top polarisation asymmetry and the ratio of cross sections at different collider energies are shown to be sensitive to the spin of the particle produced in association with the top quark pair
    corecore