877 research outputs found
Scintigraphic assessment of bone status at one year following hip resurfacing : comparison of two surgical approaches using SPECT-CT scan
Objectives: To study the vascularity and bone metabolism of the femoral head/neck following hip resurfacing arthroplasty, and to use these results to compare the posterior and the trochanteric-flip approaches.
Methods: In our previous work, we reported changes to intra-operative blood flow during hip resurfacing arthroplasty comparing two surgical approaches. In this study, we report the vascularity and the metabolic bone function in the proximal femur in these same patients at one year after the surgery. Vascularity and bone function was assessed using scintigraphic techniques. Of the 13 patients who agreed to take part, eight had their arthroplasty through a posterior approach and five through a trochanteric-flip approach.
Results: One year after surgery, we found no difference in the vascularity (vascular phase) and metabolic bone function (delayed phase) at the junction of the femoral head/neck between the two groups of patients. Higher radiopharmaceutical uptake was found in the region of the greater trochanter in the trochanteric-flip group, related to the healing osteotomy.
Conclusions: Our findings using scintigraphic techniques suggest that the greater intra-operative reduction in blood flow to the junction of the femoral head/neck, which is seen with the posterior approach compared with trochanteric flip, does not result in any difference in vascularity or metabolic bone function one year after surgery
Are component positioning and prosthesis size associated with hip resurfacing failure?
BACKGROUND: Recent studies suggest that there is a learning curve for metal-on-metal hip resurfacing. The purpose of this study was to assess whether implant positioning changed with surgeon experience and whether positioning and component sizing were associated with implant longevity. METHODS: We evaluated the first 361 consecutive hip resurfacings performed by a single surgeon, which had a mean follow-up of 59 months (range, 28 to 87 months). Pre and post-operative radiographs were assessed to determine the inclination of the acetabular component, as well as the sagittal and coronal femoral stem-neck angles. Changes in the precision of component placement were determined by assessing changes in the standard deviation of each measurement using variance ratio and linear regression analysis. Additionally, the cup and stem-shaft angles as well as component sizes were compared between the 31 hips that failed over the follow-up period and the surviving components to assess for any differences that might have been associated with an increased risk for failure. RESULTS: Surgeon experience was correlated with improved precision of the antero-posterior and lateral positioning of the femoral component. However, femoral and acetabular radiographic implant positioning angles were not different between the surviving hips and failures. The failures had smaller mean femoral component diameters as compared to the non-failure group (44 versus 47 millimeters). CONCLUSIONS: These results suggest that there may be differences in implant positioning in early versus late learning curve procedures, but that in the absence of recognized risk factors such as intra-operative notching of the femoral neck and cup inclination in excess of 50 degrees, component positioning does not appear to be associated with failure. Nevertheless, surgeons should exercise caution in operating patients with small femoral necks, especially when they are early in the learning curve
Inferior outcome after hip resurfacing arthroplasty than after conventional arthroplasty: Evidence from the Nordic Arthroplasty Register Association (NARA) database, 1995 to 2007
Today, total hip arthroplasty (THA) is one of the safest and most efficient surgical treatments. New materials, surgical techniques and design concepts intended to improve THA have not always been successful. Thorough preclinical and early clinical investigations can detect some aspects of under-performing, while continuing surveillance is recommended to detect and analyze reasons for any later appearing flaws. In this thesis, several ways to monitor and assess THA performance are explored and carried out, using survival analysis in registry studies, radiostereometry (RSA), radiology and clinical outcome.
In Paper I, a study using the Nordic Arthroplasty Register Association (NARA) registry shows that HRA had an almost 3-fold increased early non-septic revision risk and that risk factors were found to be female sex, certain HRA designs and units having performed few HRA procedures. Papers II and III contain comparisons of highly cross-linked polyethylene (XLPE) and conventional polyethylene (PE). XLPE had a considerably lower wear rate up to 10 years but showed no obvious improvements regarding implant fixation, BMD or clinical outcome. In the NARA registry, in 2 of 4 studied cup designs the XLPE version had a lower risk of revision for aseptic loosening compared to the PE version. Paper IV describes that stem subsidence and retrotorsion measured with RSA at 2 years predicted later aseptic stem failure in an unfavorably altered, previously well-functioning cemented femoral stem. In Paper V and VI, a novel approach to measure articulation wear with RSA in radiodense hip arthroplasty articulations was presented and evaluated. Subsequently, a comparison between ceramic-on-ceramic (COC) and metal-on-conventional PE uncemented THA displayed a considerably lower wear rate, smaller periacetabular bone lesions and a relatively high squeaking rate, the latter with unknown long-term consequences, in the COC hips. Implant fixation, heterotopic ossification and clinical outcome did not differ between articulation types.
In conclusion, it was confirmed that implant surveillance can be done with RSA, also in radiodense THA. Early migration predicts later aseptic implant failure. Prolonged surveillance can confirm long-term material and design performance, verify or contradict anticipated advantages as well as detect unanticipated long-term complications
A generic anti-QCD jet tagger
New particles beyond the Standard Model might be produced with a very high
boost, for instance if they result from the decay of a heavier particle. If the former decay
hadronically, then their signature is a single massive fat jet which is di cult to separate
from QCD backgrounds. Jet substructure and machine learning techniques allow for the
discrimination of many speci c boosted objects from QCD, but the scope of possibilities is
very large, and a suite of dedicated taggers may not be able to cover every possibility | in
addition to making experimental searches cumbersome. In this paper we describe a generic
model-independent tagger that is able to discriminate a wide variety of hadronic boosted
objects from QCD jets using N-subjettiness variables, with a signi cance improvement
varying between 2 and 8. This is in addition to any improvement that might come from a
cut on jet mass. Such a tagger can be used in model-independent searches for new physics
yielding fat jets. We also show how such a tagger can be applied to signatures over a wide
range of jet masses without sculpting the background distributions, allowing to search for
new physics as bumps on jet mass distributions.The work of JAAS is supported by MINECO Projects FPA 2016-78220-C3-1-P and FPA
2013-47836-C3-2-P (including ERDF), and by Junta de Andalucía Project FQM-101. The
work of JHC and RKM is supported by NSF under Grant No. PHY-1620074 and by the
Maryland Center for Fundamental Physics (MCFP)
Outcome of primary resurfacing hip replacement: evaluation of risk factors for early revision: 12,093 replacements from the Australian Joint Registry
BACKGROUND AND PURPOSE: The outcome of modern resurfacing remains to be determined. The Australian Orthopaedic Association National Joint Replacement Registry (AOANJRR) started collection of data on hip resurfacing at a time when modern resurfacing was started in Australia. The rate of resurfacing has been higher in Australia than in many other countries. As a result, the AOANJRR has one of the largest series of resurfacing procedures. This study was undertaken to determine the results of this series and the risk factors associated with revision. PATIENTS AND METHODS: Data from the AOANJRR were used to analyze the survivorship of 12,093 primary resurfacing hip replacements reported to the Joint Replacement Registry between September 1999 and December 2008. This was compared to the results of primary conventional total hip replacement reported during the same period. The Kaplan-Meier method and proportional hazards models were used to determine risk factors such as age, sex, femoral component size, primary diagnosis, and implant design. RESULTS: Female patients had a higher revision rate than males; however, after adjusting for head size, the revision rates were similar. Prostheses with head sizes of less than 50 mm had a higher revision rate than those with head sizes of 50 mm or more. At 8 years, the cumulative per cent revision of hip resurfacing was 5.3 (4.6-6.2), as compared to 4.0 (3.8-4.2) for total hip replacement. However, in osteoarthritis patients aged less than 55 years with head sizes of 50 mm or more, the 7-year cumulative per cent revision for hip resurfacing was 3.0 (2.2-4.2). Also, hips with dysplasia and some implant designs had an increased risk of revision. INTERPRETATION: Risk factors for revision of resurfacing were older patients, smaller femoral head size, patients with developmental dysplasia, and certain implant designs. These results highlight the importance of patient and prosthesis selection in optimizing the outcome of hip resurfacing
Search for new phenomena in final states with an energetic jet and large missing transverse momentum in pp collisions at √ s = 8 TeV with the ATLAS detector
Results of a search for new phenomena in final states with an energetic jet and large missing transverse momentum are reported. The search uses 20.3 fb−1 of √ s = 8 TeV data collected in 2012 with the ATLAS detector at the LHC. Events are required to have at least one jet with pT > 120 GeV and no leptons. Nine signal regions are considered with increasing missing transverse momentum requirements between Emiss T > 150 GeV and Emiss T > 700 GeV. Good agreement is observed between the number of events in data and Standard Model expectations. The results are translated into exclusion limits on models with either large extra spatial dimensions, pair production of weakly interacting dark matter candidates, or production of very light gravitinos in a gauge-mediated supersymmetric model. In addition, limits on the production of an invisibly decaying Higgs-like boson leading to similar topologies in the final state are presente
Search for direct pair production of the top squark in all-hadronic final states in proton-proton collisions at s√=8 TeV with the ATLAS detector
The results of a search for direct pair production of the scalar partner to the top quark using an integrated luminosity of 20.1fb−1 of proton–proton collision data at √s = 8 TeV recorded with the ATLAS detector at the LHC are reported. The top squark is assumed to decay via t˜→tχ˜01 or t˜→ bχ˜±1 →bW(∗)χ˜01 , where χ˜01 (χ˜±1 ) denotes the lightest neutralino (chargino) in supersymmetric models. The search targets a fully-hadronic final state in events with four or more jets and large missing transverse momentum. No significant excess over the Standard Model background prediction is observed, and exclusion limits are reported in terms of the top squark and neutralino masses and as a function of the branching fraction of t˜ → tχ˜01 . For a branching fraction of 100%, top squark masses in the range 270–645 GeV are excluded for χ˜01 masses below 30 GeV. For a branching fraction of 50% to either t˜ → tχ˜01 or t˜ → bχ˜±1 , and assuming the χ˜±1 mass to be twice the χ˜01 mass, top squark masses in the range 250–550 GeV are excluded for χ˜01 masses below 60 GeV
- …