36 research outputs found

    Activation of person knowledge in medial prefrontal cortex during the encoding of new lifelike events

    Get PDF
    Our knowledge about people can help us predict how they will behave in particular situations and interpret their actions. In this study, we investigated the cognitive and neural effects of person knowledge on the encoding and retrieval of novel life-like events. Healthy human participants learnt about two characters over a week by watching 6 episodes of one of two situation comedies, which were both centered on a young couple. In the scanner, they watched and then silently recalled 20 new scenes from both shows that were all set in unfamiliar locations: 10 from their trained show and 10 from the untrained show. After scanning, participants’ recognition memory was better for scenes from the trained show. The functional magnetic resonance imaging (fMRI) patterns of brain activity when watching the videos were reinstated during recall, but this effect was not modulated by training. However, person knowledge boosted the similarity in fMRI patterns of activity in the medial prefrontal cortex (MPFC) when watching the new events involving familiar characters. Our findings identify a role for the MPFC in the representation of schematic person knowledge during the encoding of novel, lifelike events

    Hippocampus at 25

    Get PDF
    The journal Hippocampus has passed the milestone of 25 years of publications on the topic of a highly studied brain structure, and its closely associated brain areas. In a recent celebration of this event, a Boston memory group invited 16 speakers to address the question of progress in understanding the hippocampus that has been achieved. Here we present a summary of these talks organized as progress on four main themes: (1) Understanding the hippocampus in terms of its interactions with multiple cortical areas within the medial temporal lobe memory system, (2) understanding the relationship between memory and spatial information processing functions of the hippocampal region, (3) understanding the role of temporal organization in spatial and memory processing by the hippocampus, and (4) understanding how the hippocampus integrates related events into networks of memories

    Age-related increases in posterior hippocampal granularity are associated with remote detailed episodic memory in development

    No full text
    Episodic memory is critical to human functioning. In adults, episodic memory involves a distributed neural circuit in which the hippocampus plays a central role. As episodic memory abilities continue to develop across childhood and into adolescence, studying episodic memory maturation can provide insight into the development and construction of these hippocampal networks, and ultimately clues to their function in adulthood. While past developmental studies have shown that the hippocampus helps to support memory in middle childhood and adolescence, the extent to which ongoing maturation within the hippocampus contributes to developmental change in episodic memory abilities remains unclear. In contrast, slower maturing regions, such as the PFC, have been suggested to be the neurobiological locus of memory improvements into adolescence. However, it is also possible that the methods used to detect hippocampal development during middle childhood and adolescence are not sensitive enough. Here, we examine how temporal covariance (or differentiation) in voxel representations within anterior and posterior hippocampus change with age to support the development of detailed recollection in male and female developing humans. We find age-related increases in the distinctiveness of temporal activation profiles in the posterior, but not anterior, hippocampus. Second, we show that this measure of granularity, when present during postencoding rest periods, correlates with the recall of detailed memories of preceding stimuli several weeks postencoding, suggesting that granularity may promote memory stabilization.SIGNIFICANCE STATEMENT Studying hippocampal maturation can provide insight into episodic memory development, as well as clues to episodic functioning in adulthood. Past work has shown evidence both for and against hippocampal contributions to age-related improvements in memory performance, but has relied heavily on univariate approaches (averaging activity across hippocampal voxels), which may not be sensitive to nuanced developmental change. Here we use a novel approach, examining time signatures in individual hippocampal voxels to reveal regionally specific (anterior vs posterior hippocampus) differences in the distinctiveness (granularity) of temporal activation profiles across development. Importantly, posterior hippocampus granularity during windows of putative memory stabilization was associated with long-term memory specificity. This suggests that the posterior hippocampus gradually builds the capacity to support detailed episodic recall
    corecore