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Abstract The success of fMRI places constraints on the nature of the neural code. The fact that

researchers can infer similarities between neural representations, despite fMRI’s limitations, implies

that certain neural coding schemes are more likely than others. For fMRI to succeed given its low

temporal and spatial resolution, the neural code must be smooth at the voxel and functional level

such that similar stimuli engender similar internal representations. Through proof and simulation,

we determine which coding schemes are plausible given both fMRI’s successes and its limitations in

measuring neural activity. Deep neural network approaches, which have been forwarded as

computational accounts of the ventral stream, are consistent with the success of fMRI, though

functional smoothness breaks down in the later network layers. These results have implications for

the nature of the neural code and ventral stream, as well as what can be successfully investigated

with fMRI.

DOI: 10.7554/eLife.21397.001

Introduction
Neuroimaging and especially functional magnetic resonance imaging (fMRI) has come a long way

since the first experiments in the early 1990s. These impressive findings are curious in light of fMRI’s

limitations. The blood-oxygen-level-dependent (BOLD) response measured by fMRI is a noisy and

indirect measure of neural activity (Logothetis, 2002, 2008; O’Herron et al., 2016) from which

researchers try to infer neural function.

The BOLD response trails neural activity by 2 s, peaks at 5 to 6 s, and returns to baseline around

10 s, whereas neural activity occurs on the order of milliseconds and can be brief (Huettel et al.,

2009). In terms of spatial resolution, the BOLD response may spill over millimeters away from neural

activity due to contributions from venous signals (Turner, 2002). Likewise, differences in BOLD

response can arise from incidental differences in the vascular properties of brain regions

(Ances et al., 2009). Such sources of noise can potentially imply differences in neural activity in

regions where there should not be.

The data acquisition process itself places limits on fMRI measurement. Motion artefacts (e.g.,

head movements by human subjects) and non-uniformity in the magnetic field reduce data quality.

In analysis, three-dimensional images are constructed from slices acquired at slightly different

times. Once collected, fMRI data are typically smoothed during analyses (Carp, 2012). All these fac-

tors place limits on what fMRI can measure.

Despite these weaknesses, fMRI has proved to be an incredibly useful tool. For example, we now

know that basic cognitive processes involved in language (Binder et al., 1997) and working memory

(Pessoa et al., 2002) are distributed throughout the cortex. Such findings challenged notions that

cognitive faculties are in a one-to-one correspondence with brain regions.

Advances in data analysis have increased what can be inferred by fMRI (De Martino et al.,

2008). One of these advances is multivariate pattern analysis (MVPA), which decodes a pattern of

neural activity in order to assess the information contained within (Cox and Savoy, 2003). Rather
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than computing univariate statistical contrasts, such as comparing overall BOLD activity for a region

when a face or house stimulus is shown, MVPA takes voxel patterns into account.

Using MVPA, so-called ‘mind reading’ can be carried out — specific brain states can be decoded

given fMRI activity (Norman et al., 2006), revealing cortical representation and organization in

impressive detail. For example, using these analysis techniques paired with fMRI we can know

whether a participant is being deceitful in a game (Davatzikos et al., 2005), and we can determine

whether a participant is reading an ambiguous sentence as well as infer the semantic category of a

word they are reading (Mitchell et al., 2004).

Representational similarity analysis (RSA), another multivariate technique, is particularly suited to

examining representational structure (Kriegeskorte et al., 2008; Kriegeskorte, 2009). We will focus

on RSA later in this contribution, so we will consider this technique in some detail. RSA directly com-

pares the similarity (e.g., by using correlation) of brain activity arising from the presentation of differ-

ent stimuli. For example, the neural activity arising from viewing a robin and sparrow may be more

similar to each other than between a robin and a penguin.

These pairwise neural similarities can be compared to those predicted by a particular theoretical

model to determine correspondences. For example, Mack et al. (2013) identified brain regions

where the neural similarity structure corresponded to that of a cognitive model of human categoriza-

tion, which was useful in inferring the function of various brain regions. The neural similarities them-

selves can be visualized by applying multidimensional scaling to further understand the properties of

the space (Davis et al., 2014). RSA has been useful in a number of other endeavors, such as under-

standing the role of various brain areas in reinstating past experiences (Tompary et al., 2016;

Mack and Preston, 2016).

Given fMRI’s limitations in measuring neural activity, one might ask how it is possible for methods

like RSA to be successful. The BOLD response is temporally and spatially imprecise, yet it appears

that researchers can infer general properties of neural representations that link sensibly to stimulus

and behavior. The neural code must have certain properties for this state of affairs to hold. What

kinds of models or computations are consistent with the success of fMRI? If the brain is a computing

eLife digest We can appreciate that a cat is more similar to a dog than to a truck. The

combined activity of millions of neurons in the brain somehow captures these everyday similarities,

and this activity can be measured using imaging techniques such as functional magnetic resonance

imaging (fMRI). However, fMRI scanners are not particularly precise – they average together the

responses of many thousands of neurons over several seconds, which provides a blurry snapshot of

brain activity. Nevertheless, the pattern of activity measured when viewing a photograph of a cat is

more similar to that seen when viewing a picture of a dog than a picture of a truck. This tells us a lot

about how the brain codes information, as only certain coding methods would allow fMRI to capture

these similarities given the technique’s limitations.

There are many different models that attempt to describe how the brain codes similarity

relations. Some models use the principle of neural networks, in which neurons can be considered as

arranged into interconnected layers. In such models, neurons transmit information from one layer to

the next.

By investigating which models are consistent with fMRI’s ability to capture similarity relations,

Guest and Love have found that certain neural network models are plausible accounts of how the

brain represents and processes information. These models include the deep learning networks that

contain many layers of neurons and are popularly used in artificial intelligence. Other modeling

approaches do not account for the ability of fMRI to capture similarity relations.

As neural networks become deeper with more layers, they should be less readily understood

using fMRI: as the number of layers increases, the representations of objects with similarities (for

example, cats and dogs) become more unrelated. One question that requires further investigation is

whether this finding explains why certain parts of the brain are more difficult to image.

DOI: 10.7554/eLife.21397.002
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device, it would have to be of a particular type for fMRI to be useful given its limitations in measur-

ing neural activity.

Smoothness and the neural code
For fMRI to recover neural similarity spaces, the neural code must display certain properties. Firstly,

the neural code cannot be so fine-grained that fMRI’s temporal and spatial resolution limitations

make it impossible to resolve representational differences. Second, a notion of functional smooth-

ness, which we will introduce and define, must also be partially satisfied.

Voxel inhomogeneity across space and time
The BOLD response summates neural activity over space and time, which places hard limits on what

fMRI can measure. To make an analogy, 3þ 5 and 6þ 2 both equal 8 through different routes. If dif-

ferent ‘routes’ of neural activity are consequential to the neural code and are summated in the

BOLD response, then fMRI will be blind to representational differences.

To capture representational differences, voxel response must be inhomogeneous both between

voxels and within a voxel across time. Consider the fMRI analogues shown in Figure 1; paralleling

neurons with pixels and voxels with the squares on the superimposed grid. The top-left image

depicts neural activity that smoothly varies such that the transitions from red to yellow occur in pro-

gressive increments. Summating within a square, i.e., a voxel, will not dramatically alter the high-

level view of a smooth transition from red to yellow (bottom-left image). Voxel response is inhomo-

geneous, which would allow decoding by fMRI (cf. Kamitani and Tong, 2005; Alink et al.,

2013). Altering the grid (i.e., voxel) size will not have a dramatic impact on the results as long as the

square does not become so large as to subsume most of the pixels (i.e., neurons). This result is in

line with basic concepts from information theory, such as the Nyquist-Shannon sampling

theorem. The key is that the red and yellow pixels/neurons are topologically organized: their rela-

tionship to each other is for all intents and purposes invariant to the granularity of the squares/voxels

(for more details see: Chaimow et al., 2011; Freeman et al., 2011; Swisher et al., 2010).

In contrast, the center-top image in Figure 1 involves dramatic representational changes within

voxel. Each voxel (square in the grid), in this case, will produce a homogenous orange color when its

contents are summated. Thus, summating the contents of a voxel in this case obliterates the repre-

sentational content: red and yellow; returning instead squares/voxels that are all the same uniform

color: orange. This failure is due to sampling limits that could be addressed by smaller voxels (see

B
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Figure 1. The activity of neurons in the top-left panel gradually changes from left to right, whereas changes are

more abrupt in the top-middle and top-right panels. Each square in the grid represents a voxel which summates

activity within its frame as shown in the bottom panels. For the smoother pattern of neural activity, the summation

of each voxel (bottom left) captures the changing gradient from left to right depicted in the top-left, whereas for

the less smooth representation in the middle panel all voxels sum to the same orange value (bottom middle).

Thus, differences in activation of yellow vs. red neurons are detectable using fMRI for the smooth case, but not for

the less smooth case because voxel response is homogenous. Improving spatial resolution (right panels) by

reducing voxel size overcomes these sampling limits, resulting in voxel inhomogeneity (bottom-right panel).

DOI: 10.7554/eLife.21397.003
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rightmost column). Unfortunately, arbitrarily small voxels with high sampling rates is not a luxury

afforded to fMRI.

The success of fMRI given its sampling limits is consistent with proposed neural coding schemes,

such as population coding (Averbeck et al., 2006; Panzeri et al., 2015; Pouget et al., 2000) in

cases where neurons with similar tunings spatially cluster (e.g., Maunsell and Van Essen, 1983). In

population coding, neurons jointly contribute to represent a stimulus in much the same way as pixels

were contributing to represent different colors in the leftmost column of Figure 1. When this inho-

mogeneity breaks down, similarity structures should be difficult to recover using fMRI. Indeed, a

recent study with macaque monkeys which considered both single-cell and fMRI measures supports

this viewpoint — stimulus aspects which were poorly spatially clustered in terms of single cell selec-

tivity were harder to decode from the BOLD response (Dubois et al., 2015).

The same principles extend from the spatial to the temporal domain. The BOLD response will be

blind to the differences between representations to the extent that the brain relies on the precise

timing of neural activity to code information. For example, in burstiness coding, neural representa-

tions are distinguished from one another not by their average firing rate but by the variance of their

activity (Fano, 1947; Katz, 1996). Under this coding scheme, more intense stimulus values are rep-

resented by burstier units, not units that fire more overall. Neural similarity is not recoverable by

fMRI under a burstiness coding scheme. Because the BOLD signal roughly summates through time

(Boynton et al., 1996), firing events will sum together to the same number irrespective of their

burstiness.

Likewise, BOLD activity may be a composite of synchronized activity at multiple frequencies.

Although gamma-band local field potential is most associated with BOLD response, oscillations at

other frequency bands may also contribute to the BOLD response (Magri et al.,

2012; Scheeringa et al., 2011). If so, fMRI would fail to distinguish between representational states

that are differentiated by the balance of contributions across bands, much like the arithmetic exam-

ple at the start of this subsection in which different addends yield the same sum. As before, basic

concepts in information theory, such as the Nyquist-Shannon sampling theorem, imply that tempo-

rally demanding coding schemes will be invisible to fMRI (cf. Nevado et al., 2004).

The success of fMRI does not imply that the brain does not utilize precise timing information, but

it does mean that such temporally demanding coding schemes cannot be the full story given fMRI’s

successes in revealing neural representations. Instead, the neural code must include in its mixture

at least some coding schemes that are consistent with fMRI’s successes. For example, rate coding

(Adrian and Zotterman, 1926) in which the frequency at which neurons fire is a function of the

intensity of a stimulus is consistent with the success of fMRI because changes in firing rate for a pop-

ulation of cells should be recoverable by fMRI as more blood flows to more active cells

(O’Herron et al., 2016).

These examples make clear that the neural code must be somewhat spatially and temporally

smooth with respect to neural activity (which is several orders of magnitude smaller than voxels) for

fMRI to be successful. Whatever is happening in the roughly one million neurons within a voxel

(Huettel et al., 2009) through time is being partially reflected by the BOLD summation, which would

not be the case if each neuron was computing something dramatically different for in-depth discus-

sion, see: (Kriegeskorte et al., 2010).

Functional smoothness
One general conclusion is that important aspects of the neural code are spatially and temporally

smooth. In a sense, this notion of smoothness is trivial as it merely implies that changes in neural

activity must be visible in the BOLD response (i.e., across-voxel inhomogeneity) for fMRI to be

successful. In this section, we focus on a more subtle sense of smoothness that must also be satis-

fied, namely functional smoothness.

Neighboring voxels predominantly contain similar representations (Norman et al., 2006), i.e.,

they are topologically organized like in Figure 1. However, super-voxel smoothness is neither neces-

sary nor sufficient for fMRI to succeed in recovering similarity structure. Instead, a more general

notion of functional smoothness must be satisfied in which similar stimuli map to similar internal rep-

resentations. Although super-voxel and functional smoothness are both specified at the super-voxel

level, these distinct concepts should not be confused. A function f that maps from some input x to

output y is functionally smooth if and only if
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sim x1;x2ð Þ / sim y1;y2ð Þ; (1)

where f x1ð Þ ¼ y1 and f x2ð Þ ¼ y2. For example, x and y could be the beta estimates for voxels in two

brain regions and sim could be Pearson correlation. To measure functional smoothness, the degree

of proportionality between all possible similarity pairs sim x1;x2ð Þ and sim y1;y2ð Þ also could be

assessed by Pearson correlation (i.e., does the similarity between a y1 and y2 pair increase as the sim-

ilarity increases between the corresponding x1 and x2 pair). By definition, functional smoothness

needs to be preserved in the neural code for fMRI to recover similarity correspondences (as in RSA),

whether these correspondences are between stimuli (e.g., xs) and neural activity (e.g., ys), multiple

brain regions (e.g., xs and ys), or model measure (e.g., xs) and some brain region (e.g., ys).

From this definition, it should be clear that functional smoothness is distinct from super-voxel

smoothness. For example, a brain area that showed smooth activity patterns across voxels for each

individual face stimulus but whose activity did not reflect the similarity structure of the stimuli would

be super-voxel smooth, but not functionally smooth with respect to the stimulus set. Conversely, a

later section of this contribution discusses how neural networks with random weights are functionally

but not super-voxel smooth.

To help introduce the concept of functional smoothness, we consider two coding schemes used

in engineering applications, factorial and hash coding, which are both inconsistent with the success

of fMRI because they do not preserve functional smoothness. In the next section, we consider cod-

ing schemes, such as deep learning networks, that are functionally smooth to varying extents and

are consistent with the success of fMRI.

Factorial design coding
Factorial design is closely related to the notion of hierarchy. For example, hierarchical approaches to

human object recognition (Serre and Poggio, 2010) propose that simple visual features (e.g., a hori-

zontal or vertical line) are combined to form more complex features (e.g., a cross). From a factorial

perspective, the simple features can be thought of as main effects and the complex features, which

reflect the combination of simple features, as interactions.

In Table 1, a 2
3 two-level full factorial design is shown with three factors A, B, C, three two-way

interactions AB, AC, BC, and a three-way interaction ABC, as well as an intercept term. All columns

in the design matrix are pairwise orthogonal.

Applying the concept of factorial design to modeling the neural code involves treating each row

in Table 1 as a representation. For example, each entry in a row could correspond to the activity

level of a voxel. Interestingly, if any region in the brain solely had such a distribution of voxels, neural

similarity would be impossible to recover by fMRI. The reason for this is that every representation (i.

e., row in Table 1) is orthogonal to every other row, which means the neural similarity is the same for

any pair of items. Thus, this coding scheme cannot uncover that low distortions are more similar to a

category prototype than high distortions.

Rather than demonstrate by simulation, we can supply a simple proof to make this case using

basic linear algebra. Dividing each item in the n� n design matrix (i.e., Table 1) by
ffiffiffi

n
p

, makes each

Table 1. Design matrix for a 2
3 full factorial design.

I A B C AB AC BC ABC

1 �1 �1 �1 1 1 1 �1

1 1 �1 �1 �1 �1 1 1

1 �1 1 �1 �1 1 �1 1

1 1 1 �1 1 �1 �1 �1

1 �1 �1 1 1 �1 �1 1

1 1 �1 1 �1 1 �1 �1

1 �1 1 1 �1 �1 1 �1

1 1 1 1 1 1 1 1

DOI: 10.7554/eLife.21397.004
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column orthonormal, i.e., each column will represent a unit vector and be orthogonal to the other

columns. This condition means that the design matrix is orthogonal. For an orthogonal matrix, Q,

like our design matrix, the following property holds: Q� QT ¼ QT � Q ¼ I; where QT is the transpose

of Q (a matrix obtained by swapping columns and rows), and I is the identity matrix. This property of

orthogonal matrices implies that rows and columns in the factorial design matrix are interchange-

able, and that both rows and columns are orthogonal.

The internal representations created using a factorial design matrix do not cluster in ways that

meaningfully reflect the categorical structure of the inputs. Due to the fact that each representation

is created such that it is orthogonal to every other, there can be no way for information, correlations

within and between categories, to emerge. Two inputs varying in just one dimension (i.e., pixel)

would have zero similarity; this is inherently not functionally smooth. In terms of Equation 1 and

Table 1, an x would be a three dimensional vector consisting of the values of A, B, and C, whereas

its y would be the entire corresponding row from the table. Setting aside the degenerate case of

self-similarity, there is no proportional relationship between similarity pairs because all y pairs have

zero similarity. If the neural code for a region was employing a technique similar to factorial design,

neuroimaging studies would never uncover similarity structures by looking at the activity patterns of

voxels in that region.

Hash function coding
Hash functions assign arbitrary unique outputs to unique inputs, which is potentially useful for any

memory system be it digital or biological. However, such a coding scheme is not functionally smooth

by design. Hashing inputs allow for a memory, a data store known as a hash table, that is content-

addressable (Hanlon, 1966; Knott, 1975) — also a property of certain types of artificial neural net-

work (Hopfield, 1982; Kohonen et al., 1987). Using a cryptographic hash function means that the

arbitrary location in memory of an input is a function of the input itself.

We employed (using the procedure below) the secure cryptographic hash algorithm 1 (SHA-1), an

often-used hash function, and applied it to each value in the input vector (National Institute of

Standards and Technology, 2015). Two very similar inputs (e.g., members of the same category)

are extremely unlikely to produce similar SHA-1 hashes. Thus, they will be stored distally to each

other, and no meaningful within-category correlation will arise (i.e., functional smoothness is vio-

lated). Indeed, in cryptography applications any such similarities could be exploited to make predic-

tions about the input.

If the neural code in a brain area was underpinned by behavior akin to that of a hash function,

imaging would be unable to detect correlations with the input. This is due to the fact that hash func-

tions are engineered in such a way as to destroy any correlations, while nonetheless allowing for the

storage of the input in hash tables.

Although hash tables do not seem well-matched to the demands of cognitive systems that gener-

alize inputs, they would prove useful in higher-level mental functions such as source memory

monitoring. Indeed, to foreshadow a result below, the advanced layers of very deep artificial neural

networks approximate a cryptographic hash function, which consequently makes it difficult to

recover the similarity structure in those layers.

Model
In this section, we consider whether neural networks with random weights are consistent with the

success of fMRI given its limitations in measuring neural activity. Simulations in the next section

revisit these issues through the lens of a deep learning model trained to classify photographs of

real-world categories, such as moped, tiger, guitar, robin, etc.

Each simulation is analogous to performing fMRI on the candidate neural code. These simple sim-

ulations answer whether in principle neural similarity can be recovered from fMRI data taken from

certain neural coding schemes. Stimuli are presented to a model while its internal representations

are measured by a simulated fMRI scanner.

The methods were as follows. The stimuli consist of 100-dimensional vectors that were distortions

of an underlying prototype. As noise is added to the prototype and the distortion level increases,

the neural similarity (measured using Pearson’s correlation coefficient �) between the prototype and
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its member should decrease. The question is whether we can recover this change in neural similarity

in our simulated fMRI scanner.

First, each fully-connected network was initialized to random weights drawn from a Gaussian

distribution (� ¼ 0;s ¼ 1). Then, a prototype was created from 100 draws from a Gaussian distribu-

tion (� ¼ 0;s ¼ 1). Nineteen distortions of the prototype were created by adding levels of Gaussian

noise with increasing standard deviation (s ¼ sprev þ 0:05) to the prototype. Finally, each item was

re-normalized and mean centered, so that � ¼ 0 and s ¼ 1 regardless of the level of distortion. This

procedure was repeated for 100 random networks. In the simulations that follow, the models consid-

ered involved some portion of the randomly-initialized 8-layer network (8� 100
2 weights).

The coding schemes that follow are important components in artificial neural network

models. The order of presentation is from the most basic components to more complex configura-

tions of networks. To foreshadow the results shown in Figure 2, fMRI can recover the similarity struc-

ture for all of these models to varying degrees with the simpler models faring better than the more

complex models.

Vector space coding
The first in this line of models considered is vector space coding (i.e., Rn), in which stimuli are repre-

sented as a vector of real-valued features. Representing concepts in multidimensional spaces has a

long and successful history in psychology (Shepard, 1987). For example, in a large space, lions and

tigers should be closer to each other than lions and robins because they are more similar. The kinds

of operations that are naturally done in vector spaces (e.g., additions and multiplications) are partic-

ularly well suited to the BOLD response. For example, the haemodynamic response to individual

stimuli roughly summates across a range of conditions (Dale and Buckner, 1997) and this linearity

seems to extend to representational patterns (Reddy et al., 2009).

In this neural coding scheme, each item (e.g., a dog) is represented as the set of values in its input

vector (i.e., a set of numbers with range �1; 1½ �). This means that for a given stimulus, the representa-

tion this model produces is identical to the input. In this sense, vector space coding is functionally

smooth in a trivial sense as the function is identity. As shown in Figure 2, neural similarity gradually

falls off with added distortion (i.e., noise). Therefore, this very simple coding scheme creates repre-

sentational spaces that would be successfully detected by fMRI.

BA

Figure 2. As models become more complex with added layers, similarity structure becomes harder to recover,

which might parallel function along the ventral stream. (A) For the artificial neural network coding schemes,

similarity to the prototype falls off with increasing distortion (i.e., noise). The models, numbered 1–11, are (1)

vector space coding, (2) gain control coding, (3) matrix multiplication coding, (4), perceptron coding, (5) 2-layer

network, (6) 3-layer network, (7) 4-layer network, (8) 5-layer network, (9) 6-layer network (10) 7-layer network, and

(11), 8-layer network. The darker a model is, the simpler the model is and the more the model preserves similarity

structure under fMRI. (B) A deep artificial neural network and the ventral stream can be seen as performing related

computations. As in our simulation results, neural similarity should be more difficult to recover in the more

advanced layers.

DOI: 10.7554/eLife.21397.005
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Gain control coding
Building on the basic vector space model, this scheme encodes each input vector by passing it

through a monotonic non-linear function, the hyperbolic tangent function (tanh), which is functionally

smooth. This results in each vector element being transformed, or squashed, to values between

�1; 1½ �. Such functions are required by artificial neural networks (and perhaps the brain) for gain con-

trol (Priebe and Ferster, 2002). The practical effect of this model is to push the values in the mod-

el’s internal representation toward either �1 or 1. As can be seen in Figure 2, neural similarity is

well-captured by the gain control neural coding model.

Matrix multiplication coding
This model performs more sophisticated computations on the input stimuli. In line with early connec-

tionism and Rescorla-Wagner modeling of conditioning, this model receives an input vector and per-

forms matrix multiplication on it, i.e., computes the weighted sums of the inputs to pass on to the

output layer (Knapp and Anderson, 1984; Rescorla and Wagner, 1972). These simple one-layer

neural networks can be surprisingly powerful and account for a range of complex behavioral findings

(Ramscar et al., 2013). As we will see in later subsections, when a non-linearity is added (e.g., tanh),

one-layer networks can be stacked on one another to build deep networks.

This neural coding scheme takes an input stimulus (e.g., an image of a dog) and multiplies it by a

weight matrix to create an internal representation, as shown in Figure 3. Interestingly, as shown in

Figure 3, the internal representation of this coding scheme is completely nonsensical to the human

eye and is not super-voxel smooth, yet it successfully preserves similarity structure (see Figure 2).

Matrix multiplication maps similar inputs to similar internal representations. In other words, the result

is not super-voxel smooth, but it is functionally smooth which we conjecture is critical for fMRI to

succeed.

Perceptron coding
The preceding coding scheme was a single-layer neural network. To create multi-layer networks,

that are potentially more powerful than an equivalent single-layer network, a non-linearity (such as

tanh) must be added to each network layer post-synaptically. Here, we consider a single-layer net-

work with the tanh non-linearity included (see Figure 3). As with matrix multiplication previously, this

neural coding scheme is successful (see Figure 2) with ‘similar inputs lead[ing] to similar outputs’

(Rummelhart et al., 1995, p. 31).

Multi-layered neural network coding
The basic network considered in the previous section can be combined with other networks, creating

a potentially more powerful multi-layered network. These multi-layered models can be used to cap-

ture a stream of processing as is thought to occur for visual input to the ventral stream, shown in

Figure 2B (DiCarlo and Cox, 2007; Riesenhuber and Poggio, 1999, 2000; Quiroga et al., 2005;

Yamins and DiCarlo, 2016).

Figure 3. The effect of matrix multiplication followed by the tanh function on the input stimulus. The output of

this one-layer network is shown, as well as the outcome of applying a non-linearity to the output of the matrix

multiplication. In this example, functional smoothness is preserved whereas super-voxel smoothness is not. The

result of applying this non-linearity can serve as the input to the next layer of a multi-layer network.

DOI: 10.7554/eLife.21397.006
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In this section, we evaluate whether the similarity preserving properties of single-layer networks

extend to deeper, yet still untrained, networks. The simulations consider networks with 2 to 8

layers. The models operate in a fashion identical to the perceptron neural coding model considered

in the previous section. The perceptrons are stacked such that the output of a layer serves as the

input to the next layer. We only perform simulated fMRI on the final layer of each model. These sim-

ulations consider whether the representations that emerge in multi-layered networks are plausible

given the success of fMRI in uncovering similarity spaces see also: (Cox et al., 2015; Cowell et al.,

2009; Edelman et al., 1998; Goldrick, 2008; Laakso and Cottrell, 2000). Such representations, as

found in deep artificial neural network architectures, are uncovered by adding layers to discover

increasingly more abstract commonalities between inputs (Graves et al., 2013; Hinton et al., 2006;

Hinton, 2007; Hinton et al., 2015; LeCun et al., 2015).

As shown in Figure 2, the deeper the network the less clear the similarity structure

becomes. However, even the deepest network preserves some level of similarity structure. In effect,

as layers are added, functional smoothness declines such that small perturbations to the initial input

result in final-layer representations that tend to lie in arbitrary corners of the representational space,

as the output takes on values that are þ1 or �1 due to tanh. As layers are added, the network

becomes potentially more powerful, but less functionally smooth, which makes it less suitable for

analysis by fMRI because the similarity space breaks down. In other words, two similar stimuli can

engender near orthogonal (i.e., dissimilar) representations at the most advanced layers of these net-

works. We measured functional smoothness for a large set of random input vectors using Equation 1

with Pearson correlation serving as both the similarity measure and measure of proportionality. Con-

sistent with Figure 2’s results, at layer 1 (equivalent to the perceptron coding model) functional

smoothness was 0:86, but declined to 0:22 by the eighth network layer. These values were calculated

using all item pairs consisting of a prototype and one of its distortions. In the Discussion section, we

consider the theoretical significance of these results in tandem with the deep learning network

results (next section).

Deep learning networks
Deep learning networks (DLNs) have led to a revolution in machine learning and artificial intelligence

(Krizhevsky et al., 2012; LeCun et al., 1998; Serre et al., 2007; Szegedy et al., 2015a). DLNs out-

perform existing approaches on object recognition tasks by training complex multi-layer networks

with millions of parameters (i.e., weights) on large databases of natural images. Recently, neuro-

scientists have become interested in how the computations and representations in these models

relate to the ventral stream in monkeys and humans (Cadieu et al., 2014; Dubois et al., 2015;

Guclu and van Gerven, 2015; Hong et al., 2016; Khaligh-Razavi and Kriegeskorte, 2014;

Yamins et al., 2014; Yamins and DiCarlo, 2016). For these reasons, we choose to examine these

models, which also allow for RSA at multiple representational levels.

In this contribution, one key question is whether functional smoothness breaks down at more

advanced layers in DLNs as it did in the untrained random neural networks considered in the previ-

ous section. We address this question by presenting natural image stimuli (i.e., novel photographs)

to a trained DLN, specifically Inception-v3 GoogLeNet (Szegedy et al., 2015b), and applying RSA

to evaluate whether the similarity structure of items would be recoverable using fMRI.

Architecture
The DLN we consider, Inception-v3 GoogLeNet, is a convolutional neural network (CNN), which is a

type of DLN especially adept at classification and recognition of visual inputs. CNNs excel in com-

puter vision, learning from huge amounts of data. For example, human-like accuracy on test sets has

been achieved by: LeNet, a pioneering CNN that identifies handwritten digits (LeCun et al.,

1998); HMAX, trained to detect objects, e.g., faces, in cluttered environments (Serre et al.,

2007); and AlexNet, which classifies photographs into 1000 categories (Krizhevsky et al., 2012).

The high-level architecture of CNNs consists of many layers (Szegedy et al., 2015a). These are

stacked on top of each other, in much the same way as the stacked multilevel perceptrons described

previously. A key difference is that CNNs have more variety especially in breadth (number of units)

between layers.
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In many CNNs, some of the network’s layers are convolutional, which contain components that

do not receive input from the whole of the previous layer, but a small subset of it (Szegedy et al.,

2015b). Many convolutional components are required to process the whole of the previous layer by

creating an overlapping tiling of small patches. Often convolutional layers are interleaved with max-

pooling layers (Lecun et al., 1998), which also contain tile-like components that act as local filters

over the previous layer. This type of processing and architecture is both empirically driven by what

works best, as well as inspired by the visual ventral stream, specifically receptive fields (Fukush-

ima, 1980; Hubel and Wiesel, 1959, 1968; Serre et al., 2007).

Convolutional and max-pooling layers provide a structure that is inherently hierarchical. Lower

layers perform computations on small localized patches of the input, while deeper layers perform

computations on increasingly larger, more global, areas of the stimuli. After such localized process-

ing, it is typical to include layers that are fully-connected, i.e., are more classically connectionist. And

finally, a layer with the required output structure, e.g., units that represent classes or a yes/no

response as appropriate.

Inception-v3 GoogLeNet uses a specific arrangement of these aforementioned layers, connected

both in series and in parallel (Szegedy et al., 2015b, 2015a, 2016). In total it has 26 layers and 25

million parameters inclusive of connection weights (Szegedy et al., 2015b). The final layer is a soft-

max layer that is trained to activate a single unit per class. These units correspond to labels that

have been applied to sets of photographs by humans, e.g., ‘space shuttle’, ‘ice cream’, ‘sock’, within

the ImageNet database (Russakovsky et al., 2015).

Inception-v3 GoogLeNet has been trained on millions of human-labeled photographs from 1000

of ImageNet’s synsets (sets of photographs). The 1000-unit wide output produced by the network

when presented with a photograph represents the probabilities of the input belonging to each of

those classes. For example, if the network is given a photograph of a moped it may also activate the

output unit that corresponds to bicycle with activation 0:03. This is interpreted as the network

expressing the belief that there is a 3% probability that the appropriate label for the input is

‘bicycle’. In addition, this interpretation is useful because it allows for multiple classes to co-exist

within a single input. For example, a photo with a guillotine and a wig in it will cause it to activate

both corresponding output units. Thus the network is held to have learned a distribution of appro-

priate labels that reflect the most salient items in a scene. Inception-v3 GoogLeNet, achieves human

levels of accuracy on test sets, producing the correct label in its five most probable guesses approxi-

mately 95% of the time (Szegedy et al., 2015b).

Deep learning network simulation
We consider whether functional smoothness declines as inputs are processed by the more advanced

layers of Inception-v3 GoogLeNet. If so, fMRI should be less successful in brain regions that instanti-

ate computations analogous to the more advanced layers of such networks. Unlike the previous sim-

ulations, we present novel photographs of natural categories to these networks. The key question is

whether items from related categories (e.g., banjos and guitars) will be similar at various network

layers. The 40 photographs (i.e., stimuli) are divided equally amongst 8 subordinate categories: ban-

jos, guitars, mopeds, sportscars, lions, tigers, robins, and partridges, which in turn aggregate into 4

basic-level categories: musical instruments, vehicles, mammals, and birds; which in turn aggregate

into 2 superordinates: animate and inanimate.

We consider how similar the internal network representations are for pairs of stimuli by compar-

ing the resulting network activity, which is analogous to comparing neural activity over voxels in

RSA. Correlations for all possible pairings of the 40 stimuli were calculated for both a mid and a later

network layer (see Figure 4).

The middle layer (Figure 4A) reveals cross-category similarity at both the basic and superordinate

level. For example, lions are more like robins than guitars. However, at the later layer (Figure 4B)

the similarity structure has broken down such that subordinate category similarity dominates (i.e., a

lion is like another lion, but not so much like a tiger). Interestingly, the decline in functional smooth-

ness is not a consequence of sparseness at the later layer as the Gini coefficient, a measure of

sparseness (Gini, 1909), is 0:947 for the earlier middle layer (Figure 4A) and 0:579 for the later

advanced layer (Figure 4B), indicating that network representations are distributed in general and

even more so at the later layer. Thus, the decline in functional smoothness at later layers does not

appear to be a straightforward consequence of training these networks to classify stimuli, although
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it would be interesting to compare to unsupervised approaches that can perform at equivalent accu-

racy levels (no such network currently exists).

These DLN results are directly analogous to those with random untrained networks (see

Figure 2). In those simulations, similar input patterns mapped to orthogonal (i.e., dissimilar) internal

representations in later layers. Likewise, the trained DLN at later layers can only capture similarity

structure within subordinate categories (e.g., a tiger is like another tiger) which the network was

trained to classify. The effect of training the network was to create equivalence classes based on the

training label (e.g., tiger) such that members of that category are mapped to similar network

states. Violating functional smoothness, all other similarity structure is discarded such that a tiger is

no more similar to a lion than to a banjo from the network’s perspective. Should brain regions oper-

ate in a similar fashion, fMRI would not be successful in recovering similarity structure therein. In the

Discussion, we consider the implications of these findings on our understanding of the ventral stream

and the prospects for fMRI.

Discussion
Neuroscientists would rightly prefer a method that had both excellent spatial and temporal resolu-

tion for measuring brain activity. However, as we demonstrate in this article, the fact that fMRI has

proven useful in examining neural representations, despite limitations in both its temporal and spa-

tial resolution, says something about the nature of the neural code. One general conclusion is that

the neural code must be smooth, both at voxel (such that voxel responses are inhomogeneous

across time and space) and functional levels.

The latter notion of smoothness is often overlooked or confused with super-voxel smoothness,

but is necessary for fMRI to recover similarity spaces in the brain. Coding schemes, such as factorial

and hash coding, are useful in numerous real-world applications and have an inverse function (i.e.,

one can go backwards from the internal representation to recover the unique stimulus

input). However, these schemes are incompatible with the success of fMRI because they are not

functionally smooth. For example, if the brain solely used such coding schemes, the neural represen-

tation of a robin would be no more similar to that of a sparrow than to that of a car. The fact that

such neural similarities are recoverable by fMRI suggests that the neural code differs from these

schemes in many cases.

Figure 4. Similarity structure becomes more difficult to recover in the more advanced layers of the DLN. (A) The

similarity structure in a middle layer of a DLN, Inception-v3 GoogLeNet. The mammals (lions and tigers) and birds

(robins and partridges) correlate forming a high-level domain, rendering the upper-left quadrant a darker shade of

red. Whereas the vehicles (sportscars and mopeds) and musical instruments (guitars and banjos) form two high-

level categories. (B) In contrast, at a later layer in this network, the similarity space shows high within-category

correlations and weakened correlations between categories. While some structure between categories is

preserved, mopeds are no more similar to sportscars than they are to robins.

DOI: 10.7554/eLife.21397.007
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In contrast, we found that the types of representations used and generated by artificial neural

networks, including deep learning networks, are broadly compatible with the success of fMRI in

assessing neural representations. These coding schemes are functionally smooth in that similar inputs

tend toward similar outputs, which allows item similarity to be reflected in neural similarity (as mea-

sured by fMRI). However, we found that functional smoothness breaks down as additional network

layers are added. Specifically, we have shown that multi-layer networks eventually converge to some-

thing akin to a hash function, as arbitrary locations in memory correspond to categories of inputs.

These results take on additional significance given the recent interest in deep artificial neural net-

works as computational accounts of the ventral stream. One emerging view is that the more

advanced the layers of these models correspond to more advanced regions along the ventral stream

(Cadieu et al., 2014-12; Dubois et al., 2015; Guclu and van Gerven, 2015; Hong et al., 2016;

Khaligh-Razavi and Kriegeskorte, 2014; Yamins et al., 2014; Yamins and DiCarlo, 2016).

If this viewpoint is correct, our results indicate that neural representations should progressively

become less functionally smooth and more abstract as one moves along the ventral stream (recall

Figure 2). Indeed, neural representations appear to become more abstract, encoding whole con-

cepts or categories, as a function of how far along the ventral stream they are located (Bracci and

Op de Beeck, 2016; DiCarlo and Cox, 2007; Riesenhuber and Poggio, 1999, 2000; Yamins and

DiCarlo, 2016). For example, early on in visual processing, the brain may extract so-called basic fea-

tures, such as in broadly-tuned orientation columns (Hubel and Wiesel, 1959, 1968). In contrast,

later on in processing, cells may selectively respond to particular individual stimulus classes i.e., Jen-

nifer Aniston, grandmother, concept, or gnostic cells (Gross, 2002; Konorski, 1967; Quiroga et al.,

2005), irrespective of orientation, etc.

Likewise, we found that Inception-v3 GoogLeNet’s representations became symbol-like at

advanced network layers such that items sharing a category label (e.g., tigers) engendered related

network states, while items in other categories engendered orthogonal states (recall Figure 4). Our

simulations of random networks also found reduced functional smoothness at advanced network

layers, suggesting a basic geometric property of multi-layer networks. The effect of training seems

limited to creating network states in which stimuli that share the same label (e.g., multiple view-

points of Jennifer Aniston) become similar and items from all other categories (even if conceptually

related) become orthogonal. If so, areas further along the ventral stream should prove less amenable

to imaging (recall Figure 2). Indeed, a recent object recognition study found that the ceiling on

observable correlation values becomes lower as one moves along the ventral stream (Bracci and Op

de Beeck, 2016).

Here, we focused on using fMRI to recover non-degenerate similarity spaces (i.e., where there are

similarities beyond self-similarities). However, functional smoothness is also important for other anal-

ysis approaches. For example, MVPA decoders trained to classify items (e.g., is a house or a face

being shown?) based on fMRI activity will only generalize to novel stimuli when functional smooth-

ness holds. Likewise, univariate clusters (e.g., a house or face area) will most likely be found and gen-

eralize to novel stimuli when functional smoothness holds because functional smoothness implies

similar activation profiles for similar stimuli. Functional smoothness should be an important factor in

determining how well classifiers perform and how statistically robust univariate clusters of voxels are.

In cognitive science, research is often divided into levels of analysis. In Marr’s levels, the top level

is the problem description, the middle level captures how the problem is solved, and bottom level

concerns how the solution is implemented in the brain (Marr, 1982). Given that the ‘how’ and

‘where’ of cognition appear to be merging, some have questioned the utility of this tripartite division

(Love, 2015).

Our results suggest another inadequacy of these three levels of description, namely that the

implementation level itself should be further subdivided. What is measured by fMRI is at a vastly

more abstract scale than what can be measured in the brain. For example, major efforts, like the

European Human Brain Project and the Machine Intelligence from Cortical Networks project (Under-

wood, 2016), are chiefly concerned with fine-grained aspects of the brain that are outside the reach

of fMRI (Chi, 2016; Frégnac and Laurent, 2014). Likewise, models of spiking neurons e.g.,

(Wong and Wang, 2006) are at a level of analysis lower than where fMRI applies.

Nevertheless, fMRI has proven useful in understanding neural representations that are conse-

quential to behavior. Perhaps this success suggests that the appropriate level for relating brain to

behavior is close to what fMRI measures. This does not mean lower-level efforts do not have utility
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when the details are of interest. However, fMRI’s success might mean that when one is interested in

the nature of computations carried out by the brain, the level of analysis where fMRI applies may be

preferred. To draw an analogy, one could construct a theory of macroeconomics based on quantum

physics, but it would be incredibly cumbersome and no more predictive nor explanatory than a the-

ory that contained abstract concepts such as money and supply. Reductionism, while seductive, is

not always the best path forward.
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