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Abstract 

The journal Hippocampus has passed the milestone of 25 years of publications on the 

topic of a highly studied brain structure, and its closely associated brain areas.  In a 

recent celebration of this event, a Boston memory group invited 16 speakers to address 

the question of progress in understanding the hippocampus that has been achieved.  

Here we present a summary of these talks organized as progress on four main themes 

that address this question: (1) Understanding the hippocampus in terms of its 

interactions with multiple cortical areas within the medial temporal lobe memory system, 

(2) understanding the relationship between memory and spatial information processing 

functions of the hippocampal region, (3) understanding the role of temporal organization 

in spatial and memory processing by the hippocampus, and (4) understanding how the 

hippocampus integrates related events into networks of memories. 
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hippocampus, place cells, declarative memory, navigation, memory integration, time 
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 3 

 

Hippocampus has just passed its twenty-fifth year of publication.  Over this 

period Hippocampus has published both research papers and reviews that present and 

discuss discoveries at every level of analysis, from molecular and cellular underpinnings 

of plasticity to many new insights from neuroimaging about functional organization of 

the human hippocampal region.  On May 24-25, 2016, the Charles River Association for 

Memory (CRAM), an informal meeting of memory researchers and students in the 

Boston area, hosted a celebration of this anniversary with a focus on a review of 

progress and highlights of current research on the hippocampus and memory. At this 

meeting 16 speakers reviewed progress in understanding the hippocampus and 

associated brain areas, each from their own perspective, and updated the audience on 

recent findings from their laboratories.  While there was no pre-planned organization of 

specific topics, the contents of the talks converged on four main themes that reflect 

areas of major current research towards understanding hippocampal mechanisms and 

function, and here we share our views on progress in these themes with the readers of 

Hippocampus.   

 

Understanding the hippocampus in terms of its interactions with multiple cortical areas 

within the medial temporal lobe memory system. 

Charan Ranganath critically evaluated the idea that the hippocampus and 

medial temporal lobe (MTL) cortex form a memory system that is anatomically and 

functionally separate from the surrounding neocortex. He presented the “PMAT” 

framework as an alternative view, in which there is no division between MTL and extra-
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MTL cortical regions. Instead, analyses of functional and structural connectivity across 

species support a distinction between posterior medial (PM) and anterior-temporal (AT) 

cortico-hippocampal systems (Ranganath & Ritchey, 2012; Ritchey et al., 2015; Maass 

et al., 2015).  Ranganath presented evidence showing that connectional differences 

between the PM and AT networks give rise to different functional characteristics. The 

research suggests that regions within the PM and AT networks are more functionally 

similar to other nodes in the same network—both in terms of recruitment during memory 

tasks and in terms of information encoded on single learning trials—than they are to 

regions within the other network (Ritchey et al., 2014; Wang, Ritchey et al., 2016).  

Ranganath described evidence for specialized coding of object information in the AT 

system and spatial and temporal context in the PM system in fMRI studies of spatial 

working memory (Libby et al., 2014) and temporal order (Hsieh et al., 2014). Finally, he 

presented quantitative evidence showing that the PMAT framework better accounted for 

intrinsic functional connectivity and task-related activity than did the MTL memory 

system framework. 

Whereas studies of amnesia are often assumed to reflect strict localization of 

memory processes, the PMAT framework explains MTL amnesia as a disconnection 

syndrome, in which the PM and AT networks are isolated from input coming from other 

sensory, motor, and associative networks. PMAT additionally explains how neocortical 

damage in Alzheimer’s Disease and Semantic Dementia differentially affect episodic 

and semantic memory, despite common areas of MTL damage (e.g., LaJoie et al., 

2014).  
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Ranganath closed by highlighting the fact that PMAT can explain the same 

findings as memory systems models, but it can also account for findings by Cohen and 

others implicating the hippocampus in perception, language, and action. Ranganath 

further speculated that there could be more than two cortico-hippocampal networks. The 

broader implication is that the hippocampus might implement a common computation, 

but the functional correlates would depend on which networks are interfacing with the 

hippocampus during the task.  

Digging more deeply into the cortical area that provides the most direct interface 

between the hippocampus and surrounding cortex, Menno Witter focused on new 

discoveries about interactions between lateral and medial subdivisions of the entorhinal 

cortex (LEC and MEC respectively; Witter et al., 2000).  Although different division 

schemes with more subdivisions have been proposed, particularly in primates, recent 

functional connectivity data indicate that also in humans, a functional dichotomy may 

exist. This is thus in line with what has been proposed largely based on anatomical, 

electrophysiological and behavioral data obtained in rodents and to some extent in non-

human primates. One might thus be tempted to consider the entorhinal cortex 

essentially as a ‘twin structure’ where the siblings show different phenotypes. Witter 

summarized briefly the ‘traditional arguments’ on which the subdivision between LEC 

and MEC was based, cytoarchitectonic differences blended with differences in 

hippocampal projection patterns, and major cortical connections. The latter, in particular, 

seem to be reflected well in the different functions acclaimed to be mediated by one or 

the other subdivision. Cortical connectivity of MEC is characterized by connections with 

areas such as the presubiculem, parasubiculum, retrosplenial cortex and postrhinal 
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cortex, all areas that are considered to belong to the ’spatial processing domain’ of the 

cortex (Ranganath’s PM system). In contrast, LEC is characterized by connectivity with 

olfactory areas, insular, orbitofrontal and perirhinal cortices (the AT system). These 

areas are likely more involved in processing of object information, attention and 

motivation.  

Witter subsequently presented data on the neuronal composition and 

connectivity of the intrinsic networks in LEC and MEC, concluding that until recently, 

only neurons in layer II were reported to differ with respect to electrophysiological 

properties. In view of the dominance of inhibitory connectivity between stellate cells in 

layer II of MEC, members of his group studied local connectivity between principal 

neurons in layer II of LEC. Comparable to what was reported for MEC, also in LEC, fan 

cells are mainly indirectly connected by way of fast spiking interneurons. In MEC, layer 

II cells that project to the hippocampus express the molecular marker reelin, and this is 

also true for LEC layer II hippocampal projection neurons. 

In contrast, preliminary data indicate that LEC and MEC might show differences 

in their interneuron network. Furthermore, genetic and developmental data indicate that 

the two might originate from different parts of the pallium. Together these data indicate 

that LEC and MEC are indeed two different cortical entities within the hippocampal 

region but their precise relationship is still unclear.  How these components interact is 

key to understanding the integration of information across functional streams of 

information processing performed by the hippocampal formation. 

David Amaral discussed several remaining challenges in understanding the 

relationship between the hippocampal formation and the rest of the brain. He first 
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focused on the development of these interactions. While there have been indications for 

some time that the hippocampal formation develops far earlier than other neocortical 

regions (Kostovic et al., 1993), there is actually very little published information on the 

development of hippocampal connections. Amaral (Amaral et al., 2014) demonstrated 

that entorhinal connections with the rest of the nonhuman primate hippocampal 

formation are well established by birth; even the topographic and laminar relationships 

are largely in place. While there are technological impediments for studying the 

developments of these connections in the human brain, Amaral indicated that new 

lipophilic dyes (Jensen-Smith et al., 2007) may facilitate examination of connectivity in 

the human hippocampal formation. He described ongoing studies in his laboratory to 

chart pathways emanating from the entorhinal cortex in the fetal monkey brain which 

indicate that many of these pathways are established at least by the end of the second 

trimester. 

 Another issue raised by Amaral was plasticity following early damage to the 

hippocampal formation. He summarized a series of studies carried out with Pierre 

Lavenex and Pamela Banta-Lavenex (Lavenex et al., 2006, Lavenex et al., 2007).  

Rhesus monkeys were tested in an open field octagonal maze that could evaluate local 

cue versus spatial relational learning. Animals who received complete bilateral lesions 

of the hippocampal formation as an adult were essentially at chance in performing this 

task. Even a "control" animal who turned out to have a bilateral, presumably ischemic, 

partial lesion of CA1 was unable to accomplish the task. However, another group of 

rhesus monkeys who sustained bilateral hippocampal lesions at two weeks of age were 

unimpaired at the task when tested as adults. This finding is reminiscent of studies in 
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human children who maintained the ability to learn new semantic information despite 

early damage to the hippocampus (Vargha-Khadem et al., 2003). Amaral pointed out 

that ongoing studies indicate that these early hippocampal lesions markedly changed 

the organization of the adjacent amygdala and presumably compensatory changes in 

this or other brain regions enabled the performance of a "hippocampal dependent" task 

without a hippocampus. 

 Amaral emphasized the extreme paucity of neuroanatomical information of the 

human brain and suggested that differences between what is known from the rodent 

and what actually occurs in the human may have profound influence on how the field 

views the function and pathology of the hippocampal formation. He highlighted the very 

dramatic differences in the cytoarchitectonic organization of the CA1 region and pointed 

to previous research (Ishizuka et al., 1995, Vargha-Khadem et al., 2003, Altemus et al., 

2005) that used intracellular staining techniques to demonstrate the difference in the 

morphology of CA1 pyramidal cells in the rat and monkey hippocampus. Even greater 

differences would be expected in the human brain but the morphology of human CA1 

pyramidal neurons have not been adequately studied. He also highlighted some 

potential differences in the connectivity of the human hippocampal formation. While the 

rodent has massive commissural connections between the dentate gyrus and 

hippocampus, these are largely missing in the monkey brain (Amaral et al., 1984). And 

available electrophysiological evidence suggests that this is also the case in the human 

brain (Wilson et al., 1990) which may have important implications for the understanding 

of the propagation of temporal lobe seizures. He concluded that while much has been 
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learned about the neuroanatomy of the hippocampal formation, much remains to be 

learned that can benefit from the development of new techniques. 

 

Understanding the relationship between memory and spatial information processing 

functions of the hippocampal region. 

 In 2014, Brenda Milner won the Kavli Prize in Neuroscience for the discovery of 

global amnesia following hippocampal region damage and John O’Keefe both shared 

the Kavli Prize, and won both the Nobel Prize in Physiology and Medicine along with 

Edvard and May-Britt Moser, for discoveries of position coding neurons in the 

hippocampal region.  These discoveries highlighted two prominent, and superficially 

disconnected perspectives on the hippocampus that emerged from different approaches 

and have yet to merge in a single conception about the fundamental mechanisms and 

functions of the hippocampal system (Eichenbaum & Cohen, 2014; Schiller et al., 2015).   

Supporting the view that the hippocampus plays a general role in memory, 

cognitive neuroscience studies following on the observations on amnesia due to 

hippocampal damage in humans have shown that the hippocampus is critical to 

memory and is activated when humans encode and retrieve memories, and these 

studies have shown that the particular form of memory supported by the hippocampus 

is characterized by memory for facts and events (declarative memory).  Neal Cohen 

argued that declarative memory involves a fundamentally relational (or associative or 

contextual memory) system, representing the relations among the constituent elements 

of experience, whether those relations are spatial, temporal, or associative/contextual 

(Konkel et al., 2008). The critical role of hippocampal-dependent relational memory can 
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be documented even at the shortest timescales. For example, in a series of studies of 

spatial reconstruction performance, where the spatial positions of a set of 5 or fewer 

objects must be reconstructed after a delay of just 4 sec, patients with hippocampal 

amnesia made 40x as many “swap errors” (relational errors) as did normal controls 

(Watson et al., 2013); normal controls showed strong correlation of hippocampal volume 

with spatial reconstruction task swap errors, even stronger than the correlation with 

classic long-(20-30min) delay neuropsychological tests; and normal controls showed an 

even stronger correlation between swap errors and (micro)structural integrity of the 

hippocampus measured with MR elastography (Schwarb et al., 2016). 

What is hippocampal memory for? It is used in service of many things: not only 

conscious recollection or explicit remembering, but also a huge set of cognitive 

operations and behavioral repertoires that seem to stretch the definition of memory, 

including cognitive mapping/spatial navigation, inferential reasoning, future imagining, 

creative thinking, critical aspects of language, decision-making and adaptive problem-

solving, and, active learning, active exploration, and memory-guided choice behavior 

(Cohen, 2015). 

The critical role of the hippocampus in active exploration and active learning can 

be seen in work in which participants either moved a viewing window to see and study 

objects to be remembered for later, or else saw the exact same physical stimuli 

passively when someone else guided the viewing window. Subsequent memory was 

superior for the active vs passive condition, performance depended on “revisitation” of 

previously viewed objects and such revisitations activated the hippocampus and its 

functional connections to a larger cortical network, and patients with hippocampal 
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amnesia showed very few revisitations and failed to show the advantage of active vs 

passive viewing (Voss et al., 2012). Likewise, taking advantage of our eye movement 

measures of memory, we found that viewing behavior during the study phase of the 

spatial reconstruction task tied relational memory to active exploration and active 

learning: measures of the entropy vs orderliness of transitions among successive 

fixations during study of the objects predicted swap (relational) errors in subsequent 

reconstruction performance. Such lines of work emphasize the critical role of relational 

memory in choice behavior and action, regardless of timescale, permitting memory to 

guide behavior that in turns shapes behavior, both in the moment and into the future. 

 In contrast to this general role of the hippocampus in memory and instead 

supporting the view that the hippocampus plays a specific role in spatial cognition and 

navigation, a large body of research on the firing properties of hippocampal neurons in 

rodents has confirmed and extended the observation of robust spatial firing properties of 

hippocampal region neurons, leading to the view that the hippocampus forms a 

cognitive map of physical space and supports navigational computations.  John 

O’Keefe argued that cognitive map theory postulates that the hippocampus provides 

the rest of the brain with a map of a familiar environment; the map is composed of a set 

of place representations connected together according to rules which represent the 

distances and directions amongst them. These distance and direction vectors are 

derived from the animal's movements in that environment. 

 The existence of hippocampal signals coding for location, direction, distance and 

speed of movement provide support for the theory. The primary behavioral test for 

hippocampal function is the Morris water maze navigational task that requires the 
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animal to approach a hidden platform in a water pool from different directions on each 

trial. The drawbacks of the water maze are that it is difficult to score performance and 

choice at any point in the maze independent of prior choices.  O’Keefe described a new 

land- based version of the water maze which overcomes these drawbacks.  His 

“honeycomb maze” consists of 37 octagonal platforms arranged in an octagonal pattern. 

Each platform is fixed to the top of a pneumatic tube allowing it to be raised and lowered 

independently of the others. 16 rats were trained to navigate to a specific goal platform 

from any location on the maze. At each location the animal stood on one of the 

platforms and was offered a choice of two neighboring platforms and its task was to 

choose the one which had the smallest angle with the direction of the goal. The animal 

was rewarded when it reached the goal but not elsewhere. 

 Control rats learned the task quickly and their performance was affected by three 

variables: it deteriorated as the angle between the two platforms decreased, as the 

distance of the choice point from the goal increased as predicted by Hull’s goal gradient 

effect, and as the angle between the direction of the correct platform and the direction to 

the goal increased as predicted by Dashiell’s goal direction factor. Although the 

percentage of correct choices decreased as the direction of the correct platform 

deviated from the goal direction, performance still remained above chance at all angles 

showing that animals are capable of determining which of 2 platforms has the smaller 

angle to the goal direction. O’Keefe interprets these findings as evidence that the 

hippocampus is capable of vector computations. 

 Edvard Moser outlined evidence that the brain’s representation of space relies 

on a plethora of interconnected cell types whose firing is tuned to specific spatial 
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features (Hafting et al., 2005; Rowland et al., 2016). This extended network spans 

multiple brain areas, most notably the hippocampus (place cells) and the medial 

entorhinal cortex (grid cells, border cells, head direction cells and speed cells). 

Spatially-modulated cells do not respond linearly to individual physical features of 

the sensory world. Instead it has been proposed that spatially-tuned patterns of cell 

activity arise as the result of network computation of the incoming multisensory 

information. Attractor network properties, which depend on specific connections 

between specific classes of cells, may be crucial to the formation of grid patterns, and 

grid cells, along with border cells, may be critical for the formation of place cells in the 

hippocampus (Rowland et al., 2016).  Therefore, understanding the topology of the 

network and how it is assembled is fundamental to understanding how specific spatially-

tuned firing emerges.  

Investigating the emergence of spatially-tuned firing during development has 

been a valuable tool to this end. Tetrode recordings in young rats have shown that 

place, border and head direction cells exhibit adult-like features from the onset of spatial 

navigation, whereas the regular firing of grid cells emerges at the end of a protracted 

period during postnatal development. This protracted period coincides with the 

structural and functional maturation of layer II microcircuit of the medial entorhinal 

cortex, and specifically with the maturation of excitatory-driven fast spiking interneurons 

(Langston et al., 2010, Couey et al 2013). Moser showed data suggesting that 

manipulation of the rearing environment during this period may influence how fast 

animals acquire grid maps at adult age, although the data also show that maturation of 

grid cells is surprisingly robust to experience (rearing in a sphere disrupted grid-like 
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firing on the first few exposures to an outside environment at adult age but then it 

recovered).  

The robustness to experience points to the importance of maturational factors in 

the development of the entorhinal-hippocampal circuit. However, surprisingly little is 

known about the structural maturation of this system, and the role that early excitatory 

activity in the different components of the network exert on its structural maturation and 

connectivity.  Moser presented preliminary data suggesting that maturation follows the 

entorhinal-hippocampal circuit, from MEC layer II through CA3 to CA1 and to MEC layer 

V. Within MEC, the circuit developed from dorsal to ventral. The stages of the circuit are 

interdependent in the sense that maturation of one step is necessary for the next. 

Stellate cells (in the dorsal MEC) were the first to be born, and to mature, in the MEC, 

and activity of these cells was necessary for the maturation of all other elements of the 

MEC and hippocampus circuit. Moser also talked about the origin of the speed-cell 

signal (Kropff et al., 2015), which was hypothesized, based on preliminary data, to 

originate in the mesencephalic locomotor region, more specifically the 

penunculopontine nucleus, reaching the MEC via connections to the medial septum – 

diagonal band.  A full characterization of the development of the spatial firing properties 

of neurons in this system promises new insights into how spatial information processing 

is organized by interactions between components of the system during development 

and experience. 

Elizabeth Buffalo discussed her non-human primate model as a possible 

direction for highlighting common fundamental features of memory and spatial cognition.  

Motivated by research in amnesic patients with damage to medial temporal lobe 
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structures, research in nonhuman primates has focused mostly on the mnemonic 

functions of the hippocampus and associated cortices. By contrast, neurophysiological 

studies in rodents have primarily emphasized the spatial representations of the 

hippocampal formation. In her talk, Beth Buffalo argued that we should carefully 

consider the role eye movements play in modulating neural activity in the primate 

hippocampal formation. One striking difference between rodents and primates is in the 

way in which information about the external world is gathered.  While rodents typically 

gather information by moving to visit different locations in the environment, primates 

often use eye movements to visually explore an environment, and our visual system 

allows for inspection of our environment at a distance (see Cohen, above).  Buffalo 

presented data which demonstrated that eye movements affect primate neural activity in 

a way that is comparable to rodents’ movement through space.  

Using a free-viewing paradigm in monkeys, research in the Buffalo lab has 

identified spatial representations in neurons in the primate entorhinal cortex that reflect 

eye movements (Killian et al., Nature, 2012; Killian et al., PNAS, 2015). These 

representations include entorhinal grid cells and border cells, as well as saccade-

direction cells, a potential analog to rodent head-direction cells. In addition, research in 

the Buffalo lab has identified theta-band oscillations in the primate hippocampus that 

are modulated by visual exploration. In particular, saccades serve to reset the ongoing 

hippocampal theta-band oscillation, perhaps as a way to optimize the processing of 

incoming information (Jutras et al., 2013; Jutras et al., 2014; see also Hoffman et al., 

2013).  
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The Buffalo lab has also trained monkeys to use a joystick to navigate virtual 

environments, performing tasks of free-foraging and a virtual Morris water maze task of 

spatial memory. Preliminary data from these studies suggest that virtual navigation 

elicits theta-band oscillations in the primate hippocampus as well as spatial 

representations that reflect the maneuvers made by the monkey. Buffalo presented data 

demonstrating that primate hippocampal neurons show selectivity for aspects of 

behavior in virtual navigation including turning behavior and velocity modulation 

(Browning et al., 2016). Ongoing studies in the Buffalo lab utilize novel behavioral tasks 

and novel virtual environments to further probe the nature of hippocampal 

representations, with the goal of testing the overarching hypothesis that the 

hippocampal formation contributes to a general map of cognition, which involves space 

and time along with other dimensions by which cognition can be organized. 

Another view on reconciling the spatial and memory views was offered by Lynn 

Nadel, who argued that first emerged out of the disagreement between human and 

monkey/rat data on hippocampal lesions.  In the 1960s work on the patient H.M. 

indicated that the human hippocampus was critical for memory, but early animal models 

of amnesia following hippocampal damage failed initially to replicate the memory 

impairment.  In H.M., the damage was most severe at the anterior (ventral in rats) end 

of the hippocampus, whereas most rat studies focused on the dorsal (posterior in 

humans) hippocampus.  The first hint of a resolution based on the distinction of function 

along the long axis of the hippocampal region came from single-unit studies in rats 

showing that place cell field size varied along the longitudinal axis – small at the dorsal 

end, larger at the ventral end (Jung, Weiner and McNaughton, 1994).  Work in humans 
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has recently suggested that the posterior/dorsal hippocampus represents spatial details 

while the anterior/ventral hippocampus seems to represent entire locations or contexts 

(Nadel, Hoscheidt and Ryan, 2013).   

Work on entorhinal cortex (Stensola et al. 2015) made a crucial contribution by 

showing that grid cells along the axis react differentially to a remapping situation 

(compression of the experimental apparatus).  Grid cells at the dorsal end retained 

spatial resolution but those at the ventral end did not, they instead retained context 

representation.  These network-level effects show that while cells along the axis are all 

‘mapping space’ they nonetheless have somewhat different functions reflecting a grain 

difference (cf. Poppenk et al., 2013).  Further work on the differential function of areas 

along the long axis of the hippocampal region may lead to a deeper insight about spatial 

and memory processing. 

 

Understanding the role of time in spatial and memory processing by the hippocampus 

 In addition to a strong role for space, recent work has highlighted multiple ways 

in which temporal organization is represented within, and influences, memory 

representations.  Different lines of study have discovered firing sequences compressed 

over very brief periods that recapitulate temporally organized firing patterns observed 

during behavioral events, described the coding of sequential moments over the course 

of seconds in temporally structured experiences, and identified a key role for extended 

time in linking memories and influencing the strength of memories. 

 György Buzsáki described sharp wave ripples (SWRs) of the hippocampus, a 

local field potential phenomenon that involves synchronous population activity of the 
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hippocampus that “replays” sequences of spiking activity that recapitulate recent 

experiences. Sharp wave ripples occur during ‘off-line’ states of the brain, associated 

with consummatory behaviors and non-REM sleep, and are influenced by numerous 

neurotransmitters and neuromodulators. SWRs arise from the excitatory recurrent 

system of the CA3 region and the sharp wave ripple-induced excitation brings about a 

fast network oscillation (ripple) in CA1.  

The spike content of sharp wave ripples is temporally and spatially coordinated 

by a consortium of interneurons to replay fragments of waking neuronal sequences in a 

compressed format.   Thus, while classic hippocampal place cells activate sequentially 

as an animal traverses locations in space, elements of the sequence of activations are 

reproduced in brief form during subsequent SWRs. Given that sharp wave-ripples are 

involved in constructing both retrospective and prospective information, Buzsáki 

hypothesized that they are critical for maintaining the cognitive map. According to this 

hypothesis, disrupting neuronal activity specifically during sharp wave ripples should 

result in an altered representation of space coded by place cells.  

To test this hypothesis Buzsáki’s group trained mice to learn every day a new set 

of three goal locations on a multi-well maze. As the mouse learned, sharp wave ripples 

occurred regularly at the goal locations. They aborted them in real time by optogenetic 

silencing of a small subset of CA1 pyramidal neurons. Following learning, control (non-

illuminated and random delay-silenced) place cells maintained the location of their place 

fields during learning and showed increased spatial information content. In contrast, the 

place fields of SWR-silenced place cells shifted after learning, and their spatial 

information was unaltered.  Sharp wave ripple silencing did not impact the firing rates or 
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the proportions of place cells. Optogenetic silencing of place cells at random delays 

after SWRs did not affect their spatial properties as compared to non-illuminated 

controls. These observations indicate that sharp wave ripple-associated spiking activity 

is necessary to maintain stable hippocampal place fields and preserve the cognitive 

map. 

These findings demonstrate that spiking of recently active place cells during 

sharp wave ripples is critical for maintaining place field stability in the hippocampal CA1 

region while the animal learns a new configuration of the hidden reward locations in that 

environment. During each session, place fields ‘re-stabilized’ during the learning trials. 

Silencing pyramidal neurons during SWRs in the goal areas prevented them from 

becoming part of the re-stabilized map. These results support the hypothesis that sharp 

wave ripples are essential for the maintenance of the cognitive map. 

 The firing patterns in sharp wave ripples reflect sequences of locations that have 

recently occurred during movement, raising the question of how the hippocampus 

incorporates information about periods when an animal is immobile at a location in 

between movement events.  Loren Frank addressed the question of whether and how 

the hippocampus constructs a representation of current position in the absence of 

movement.  Frank and colleagues showed that a specific subset of neurons in the CA2, 

CA3 and CA1 subregions demonstrates remarkably specific place-related activity during 

immobility (Kay et al., 2016).  They first identified these neurons in hippocampal area 

CA2 and found that spike-triggered analysis of immobile periods indicated that these 

neurons associate with a specific hippocampal LFP pattern Frank termed an N-wave: a 

~200 ms, low frequency positive "wave" detectable in CA3 and DG LFP. They then 
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found that putative interneurons located throughout the hippocampus also associate 

with the N-wave and further that CA1 and CA3 principal neurons associating with the N-

wave also show profound location specificity during immobility. These findings identify a 

hippocampal network pattern, distinct from both hippocampal theta and sharp-wave 

ripples, which operates during immobility. The association of this pattern with spatially 

specific firing indicates that the hippocampus actively represents current position during 

immobility. Their results also demonstrate rapid switching between representation of 

current position and sharp wave ripple-associated representations of past (“replay”) and 

potential (“preplay”) navigational experience. 

 Howard Eichenbaum described a different role for time in the firing patterns of 

hippocampal principal cells that occurs during ongoing behavior.  He outlined evidence 

of hippocampal “time cells” in studies where animals repeat specific temporally-

structured experiences.  In these studies he and others (Eichenbaum, 2014) have 

described neurons that fire reliably at a succession of specific moments in temporally 

structured episodes, much like place cells fire at specific locations in spatially structured 

environments.  In one study his group recorded as rats ran on a treadmill during the 

delay period of a T-maze delayed alternation task and observed that some hippocampal 

neurons fired at specific brief periods during wheel running.  In this study running on a 

treadmill that strongly maintains the animal’s head and body location, thus 

distinguishing temporally modulated activity from changes in location as an animal runs 

through space (Kraus et al., 2013).  In addition, by varying the speed of the treadmill 

they disentangled neural activity associated with elapsed time from that associated with 

distance traveled while running in place, and found that some cells coded only time, 
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others coded only distance, and most encoded time and distance to different extents.  In 

a second study, they also identified memory-specific time cell sequences in head-fixed 

animals performing a non-spatial delayed matching to sample task,  

Eichenbaum argued that these findings combined with many other studies 

provide abundant evidence that hippocampal neurons fire in specific moments in 

temporally structured experiences, along with or independent of spatial influences, as 

shown both by distinguishing spatial and temporal influences and by holding location 

and behavior constant (Eichenbaum, 2014). These studies indicate that the properties 

of hippocampal time cells parallel those of place cells.  Just as place cells are guided by 

local spatial cues, time cells are guided by temporal cues (the length of an interval; 

MacDonald et al., 2011).  Time cells and place cells both also encode specific stimuli 

and behavioral actions (MacDonald et al., 2011; Kraus et al., 2013).  Like place cells, 

time cell activation patterns predict memory success and memory choices (Pastalkova 

et al., 2008).  

In addition, Eichenbaum presented evidence that the medial entorhinal cortex 

also represents moments in time and is critical to time cell sequences in the 

hippocampus.  His group finds that grid cells in the medial entorhinal cortex and 

elsewhere fire at specific moments in time (as well as with distance run) during treadmill 

running and, similar to the multipeaked spatial firing patterns of grid cells observed as 

animals explore space, many entorhinal grid cells also have multipeaked temporal firing 

patterns (Kraus et al., 2015).  Furthermore, Eichenbaum presented preliminary 

evidence that brief optogenetic inactivation of a large portion of the medial entorhinal 

cortex disrupts time cell sequences in the hippocampus.  These complementary findings 
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indicate that space and time are processed together in the hippocampus and medial 

entorhinal cortex. 

 Alcino Silva examined how temporal coding over long periods (minutes to 

hours) can link memories for related experiences.  He argued that, although real world 

learning often requires the association of information across time, where one memory 

becomes associated or linked to another minutes, hours or even days apart, little is 

known about the molecular, cellular and circuit mechanisms that link or connect 

memories across time (Silva et al., 2009; Rogerson et al., 2014. Recent studies, 

including experiments that addressed the mechanisms that determine which neurons go 

on to encode a given memory (i.e., memory allocation; Han et al., 2007, 2009; Silva et 

al., 2009, propose that learning triggers the activation of the transcription factor CREB, 

and a subsequent temporary increase in neuronal excitability. This, in turn biases the 

allocation of a subsequent memory to the neuronal ensemble encoding the first memory, 

such that the recall of one memory increases the likelihood of recalling the other 

memory. Accordingly, studies with head mounted fluorescent microscopes and TetTag 

mice show that the overlap between the hippocampal CA1 ensembles activated by two 

distinct contexts acquired within a day is higher than when the two contexts are 

separated by a week, and that this CA1 ensemble overlap is associated with behavioral 

linking of the two contextual memories, so that the recall of one context triggers the 

recall of the other (Cai et al., 2016). Importantly, older mice, known to have lower CA1 

excitability, do not show the overlap between CA1 neuronal ensembles, or the 

behavioral linking of memories across time. However, increasing cellular excitability with 

a chemogenetic approach (DREADD), and activating a common ensemble of CA1 
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neurons during two distinct context exposures, rescued the CA1 neuronal ensemble 

overlap deficit as well as the behavioral linking of memories in aging mice. Remarkably, 

recent studies have also implicated the CA1 region in human relational memory, 

suggesting that the studies in mice reflect general mechanisms of memory linking. 

Disruption of these mechanisms may result in source and relational memory problems 

associated with psychiatric problems, including schizophrenia, and major depression. 

 In addition, two other talks focused on how information encoded during an 

experience can persist for varying periods of time.  Richard G M Morris emphasized 

that a memory trace may be encoded and stored within long-term memory, but this is no 

guarantee that the information will be retained for a long time.  For some years, his 

group has been investigating the idea that neural activity happening some time before 

or for a period after an encoding experience can contribute to memory retention – the 

flow of experience.  Instead of such neural activity serving to interfere with memory 

stability, it may sometimes trigger neuromodulatory transmission that activates an 

intracellular cascade potentiating the memory of events occurring around the same time.  

In this connection, it is notable that the retention of episodic-like memory is enhanced, in 

humans as well as in animals, when something novel happens shortly before or after 

encoding. Could it be that novelty serves to activate this same biochemical cascade 

whose outcome is enhanced stabilization of recently potentiated synapses?  This idea is 

integral to the “synaptic tagging and capture” theory of lasting long-term potentiation 

and, with it, of the very types of synaptic plasticity widely thought to underlie memory 

traces. 
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Using an everyday memory task for mice, Morris’ lab group sought the neurons 

mediating an apparently dopamine-dependent enhancement of memory retention by 

novelty, previously thought to originate exclusively from the tyrosine hydroxylase-

expressing (TH+) neurons in the ventral tegmental area (VTA). He reported that 

neuronal firing in the locus coeruleus (LC) is especially sensitive to environmental 

novelty.  Anatomical studies showed that LC-TH+ neurons project more profusely than 

VTA-TH+ neurons to the hippocampus.  Further, optogenetic activation of LC-TH+ 

neurons mimics the novelty effect, and this novelty-associated memory enhancement 

was unaffected by inhibition of VTA neurons. Surprisingly, three effects of LC-TH+ 

photoactivation are sensitive to dopamine D1/D5 receptor blockade and resistant to 

noradrenergic-receptor blockade – memory enhancement, potentiation of synaptic 

transmission, and enhancement of long-term potentiation, in area CA1 in vitro. It seems, 

therefore, that LC-TH+ neurons can mediate post-encoding memory enhancement in a 

manner consistent with the release of dopamine in hippocampus (Takeuchi et al, Nature, 

2016, in press).  

Lila Davachi presented results from functional imaging experiments in humans 

demonstrating that multivariate hippocampal activation patterns that characterize one 

experience can persist into post-encoding time periods  (Tambini et al, 2010; Tambini 

and Davachi, 2013; Tompary et al, 2015).  Individual differences in the persistence of 

hippocampal activation patterns relates to subsequent memory in that they predict later 

memory for the representations encountered during the task.  Furthermore, memory-

associated hippocampal patterns persist into active time periods as well.  In one 

experiment Davachi’s group had participants doing ‘math’ instead of resting and showed 
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that CA1-VTA connectivity that was present during the associative encoding task and 

predictive of later associative memory also persisted into the subsequent unrelated 

MATH task. Furthermore CA1-VTA connectivity during the unrelated math task also 

predicted later associate memory independently from what was seen during encoding 

(Tompary et al, 2015).  Davachi also presented data showing that post-encoding 

manipulations (in fear conditioning and reward learning) can alter the subsequent 

consolidation of conceptually related representations via a retroactive selective memory 

enhancement (Dunsmoor et al, 2015).  These latter findings bear resemblance to Morris’ 

tag and capture hypothesis derived from animal models. 

 In addition, Davachi suggested if patterns representing past experiences persist 

into the future that they might influence how new information is encoded. She outlined 

preliminary data that shows that hippocampal (and whole brain) patterns of activity 

measured during emotional encoding bleeds ~ 30 minutes forward into a neutral 

encoding block and changes both behavior, by enhancing the encoding of the neutral 

scenes (makes them stronger in memory as if they were emotional), and brain patterns 

which look more similar to emotional encoding brain patterns than neutral brain patterns. 

 Davachi concluded that these findings parallel in humans key observations from 

studies on aspects of temporally persistent activity in animals.  The persistence of 

hippocampal brain patterns (in particular in CA1) is related to hippocampal replay in 

sharp wave ripples as well as to Silva’s new data on overlapping hippocampal 

ensembles representations that are acquired close in time.   Also, the retroactive 

memory effects of VTA activation and emotional experiences are likely related to Morris’ 

tag and capture hypothesis and new findings.  Davachi suggested two distinct 
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mechanisms for temporal integration (Davachi and DuBrow, 2015) that are in the field 

right now: (1) For experiences that occur close in time, ongoing hippocampal patterns 

may involve overlapping neural ensembles and this context signal can promote their 

associative retrieval or integration. (2) For experiences that are very far apart in time 

(minutes, hours, days), reactivation of the prior event can promote the integration of 

new events into old memory patterns.  

Understanding how the hippocampus integrates related events into networks of 

memories. 

Lynn Nadel introduced the critical importance of integrating memories acquired 

at different times in his comments on consolidation and reconsolidation of memories.  

He argued that current questions about consolidation emerged because the initial idea 

that the hippocampus is in some sense a temporary memory system has been 

overturned, and we now understand that the recall of relatively detailed remote 

memories requires hippocampal involvement (cf. Nadel et al., 2000; Ryan et al., 2001).  

This shift was reflected in Multiple Trace Theory (Nadel & Moscovitch, 1997), which 

raised the possibility that reactivating an apparently consolidated memory might 

plausibly change it.  Work in his lab on episodic memory reconsolidation (Hupbach et al, 

2007, 2008, 2009) showed that memories can be changed, and has now explored some 

of the factors controlling what Nadel thinks is actually memory “updating”.  Context 

seems particularly important, as does the nature of the reactivation.  In a recent fMRI 

study his group has shown that when reactivation robustly activates a brain network 

indicative of the retrieval of extensive detail one sees very little updating – it appears 
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that vividly retrieved memories are more readily distinguished from the current situation, 

hence less likely to be conflated. 

Alison Preston emphasized that learning events do not occur in isolation; rather, 

how we learn in the present is often influenced by what we have experienced in the past.  

The recent findings on interactions between experiences that occur close in time, as 

discussed above, is one way in which past experiences influence new memories.  

Beyond the role of time, work in Preston’s laboratory has shown that new events that 

relate to past experiences in context trigger reactivation of existing memories in both 

neocortex and CA1, a striking parallel to recent findings from the Silva group 

(Schlichting, Zeithamova, & Preston, 2014; Zeithamova, Dominick, & Preston, 2012). 

Reactivated memories may then be modified to accommodate the new information. 

Such integration of past and present experience can promote the formation of abstract 

knowledge that represents the relationships among distinct learning events (Schlichting, 

Mumford, & Preston, 2015). In a series of human neuroimaging studies, the Preston 

group has shown that integrated memories that span experiences support novel 

behavior across a variety of tasks and cognitive domains, including inferential reasoning, 

concept formation, and generalization (Schlichting & Preston, 2015).  

Preston highlighted an important role for anterior hippocampus and posterior 

medial prefrontal cortex (mPFC) in memory integration. Preston’s group has shown that 

increased hippocampal-mPFC engagement and connectivity during events overlapping 

with existing memories promotes both new learning and inference (Zeithamova et al., 

2012). Interactions between these regions during rest periods following overlapping 

event encoding further benefit memory for the overlapping content, indicating that offline 
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periods and consolidation more generally plays an important role in memory 

restructuring (Schlichting & Preston, 2014; Schlichting & Preston, In press). 

Memory integration can also be shown at a representational level within anterior 

hippocampus and posterior mPFC. Distributed activation patterns within these regions 

become more similar for events that share common features (Schlichting et al., 2015), 

and come to reflect memory schemas that guide decisions in novel learning contexts 

(Molitor et al., 2015). Moreover, mPFC mediates updating of hippocampal 

representations when environmental goals change. Through interactions with mPFC, 

anterior hippocampal schemas reflect the changing relevance of individual event 

features, prioritizing features that are most relevant for the current task goal. 

The notion that new learning interacts with existing memories is by no means 

new; yet, the neural mechanisms and behavioral implications of memory integration are 

not well understood. Collectively, Preston’s work on this topic provides a mechanistic 

account of how past and present experience dynamically interact, leading to the 

formation of adaptive memory representations that anticipate future use.  The results 

suggest that mPFC biases reactivation toward behaviorally relevant memories, 

promoting updating of hippocampal representations to reflect the general principles that 

are shared among specific events (Schlichting & Preston, 2015). More broadly, these 

findings indicate that integrated hippocampal representations support a host of flexible 

behaviors beyond the domain of episodic memory. 

Stephan Heckers considered what we know about the hippocampus with regard 

to understanding schizophrenia. Schizophrenia is one of several neuropsychiatric 

disorders characterized by abnormalities of hippocampal structure and function. In 
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contrast to the longstanding interest in exploring the cerebral cortex as the neural basis 

for schizophrenia, studies of the hippocampus did not begin until 1985 (Bogerts et al., 

1985). Since then, postmortem studies of hippocampal structure and gene expression 

and increasingly sophisticated in-vivo studies of hippocampal structure and function 

have provided convincing evidence for a role of the hippocampus in the disease 

mechanism of psychotic disorders (Heckers and Konradi, 2010). 

Smaller hippocampal volume is the most robust structural brain change in 

schizophrenia, with an effect size exceeding 0.5 (Adriano et al., 2012). There is 

significant interest in identifying the anatomical pattern of this volume change. While 

there is some evidence for greater volume changes in subfield CA1, there is now also 

emerging evidence for greater changes in the anterior (uncus) compared to the 

posterior hippocampus (Strange et al., 2014) 

Most neuropsychiatric disorders that are characterized by a volume reduction of 

the hippocampus (e.g., AD, epilepsy, amnesia) are associated with significant loss of 

hippocampal principal cells (i.e., the glutamatergic, excitatory pyramidal cells). The 

volume change in schizophrenia, however, is not due to a loss of pyramidal cells 

(Konradi et al., 2011). In contrast, there are significant decreases in the protein and 

gene expression of subsets of hippocampal interneurons. Two types, the parvalbumin-

positive and the somatostatin-positive interneurons are particularly affected, leading to 

an abnormal balance of excitation and inhibition (Heckers and Konradi, 2010; Konradi et 

al., 2011). 

Recent neuroimaging studies have provided compelling evidence that the 

baseline activity of the anterior hippocampus is increased and that the recruitment 
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during task performance is impaired in schizophrenia (Heckers et al., 1998) (Schobel et 

al., 2009). This affects relational memory specifically, resulting in decreased 

performance on associative and transitive inference tasks (similar to those employed by 

Preston) in the early as well as later stages of schizophrenia (Armstrong et al., 2012a; 

Armstrong et al., 2012b; Ongur et al., 2006).  These findings highlight the importance of 

linking the information processing functions of the hippocampus to cellular and 

structural abnormalities in mental disorders.    

 

Issues of 25 years ago, current understandings, and future challenges 

 We have come a long way in the last 25 years.  Where do we stand and where 

are we headed?  Although there is not a full consensus on the following points, the 

following are some of the common threads that cut across the themes outlined above 

and, combined with the themes outlined above and recent findings by other 

investigators, these new understandings indicate that we have moved on from 

questions about what role the hippocampus plays to deeper, recently emergent 

questions about mechanisms of information processing in the hippocampal system: 

 

1. 25 years ago it was about the fundamental role of the hippocampus in 

consolidation as a temporary store, but now it’s about integrating the coding of 

new events with past and succeeding events.  Nadel (above) directly addressed 

this issue in his work (Nadel & Moscovitch, 1997), and the findings on the 

phenomenon of reconsolidation are now widely interpreted as a result of 

successful or failed integration of new memories within an existing network 
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(Morris et al., 2006; Hardt et al., 2010; Mckenzie & Eichenbaum, 2011; Dudai, 

2012).   Evidence for the integration of memory representations in the 

hippocampus is now well established in studies on the acquisition and 

expression of related memories in humans (Preston, above; Milivojevic & Doeller, 

2013; Collin et al., 2015; Constantinescu et al., 2016) and animals (Silva, above; 

Mckenzie et al., 2014).  The integration process is strongly influenced by the 

salience of succeeding new experiences (Morris, Davachi, above). Furthermore 

the role of the hippocampus in memory integration extends to the expression of 

integrated memories in on-line processing, associated with guiding of choice 

behavior in the context of spatial navigation, inferential reasoning, planning, and 

more.  

2. In studies on rodent models, 25 years ago it was about spatial coding as the 

predominant feature of hippocampal neuronal activity, but now temporal 

organization is also a prominent dimension of hippocampal representations of 

ongoing experience (Eichenbaum, above; Pastalkova et al., 2008; Naya & 

Suzuki, 2011; Allen et al., 2016), post-encoding stabilization (Buzsaki, above; 

Carr et al., 2011; Wikenheiser & Redish, 2015a), linking memories across 

experiences (Frank, Davachi, above), and planning (Cohen, above; Diba and 

Buzsáki, 2007; Pfeiffer & Foster, 2013; Wikenheiser & Redish, 2015b). 

3. 25 years ago it was about the hippocampus itself or the hippocampal region as a 

whole, but now it’s about how the hippocampus interacts with other areas within 

the medial temporal lobe and elsewhere.   As outlined by Ranganath (above), 

emerging evidence has allowed us to trace specific processing pathways by 
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which hippocampal representations facilitate learning of high-level knowledge 

about people, things, and their spatial, temporal, and situational relationships in a 

given context. Within such schemes the hippocampus is recognized as a “hub” 

between a system that originates in the classic “where” stream and processes 

spatial organization and movement through the organization, and a system that 

originates in the “what” stream and processes high order representations of 

events.  The idea that the hippocampus is the convergence site for these 

systems (Davachi, 2006; Eichenbaum et al., 2007) takes on new importance as 

we recognize interactions in both directions between the hippocampus and these 

streams (Rowland et al., 2016; Knierim et al., 2103; Keene et al., 2016) and 

between the streams directly (Witter, above).  The interactions between these 

areas may support all manner of organization in memory, including organization 

by time (Eichenbaum, above) and abstract dimensions (Constantinescu et al., 

2016). 

4. 25 years ago it was about whether the hippocampus is specialized for spatial 

memory and navigation (O’Keefe, Moser, above) or supports a broader role in 

memory (Cohen, above; Squire & Wixted, 2011).  But now it’s about identifying 

the breadth of dimensions by which the hippocampal region organizes 

representations of experience and the range of behavioral repertoires it enables.  

In addition to spatial dimensions, other dimensions by which the hippocampal 

region maps cognition include egocentric visual space (Buffalo, Cohen, above), 

social relations (Tavares et al., 2015), object associations (Cohen, Preston, 

Heckers, above), temporal relations (Cohen, Silva, Davachi, Eichenbaum, 
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above), and conceptual space (Buzsáki and Moser, 2012; Constantinescu et al., 

2016).  Furthermore, space as well as non-spatial dimensions may be mapped 

along a continuum of the resolution of detail of events within the long axis of the 

hippocampal region, from specific memories and particular places in the dorsal 

(rats)/posterior (humans) hippocampus to generalized memories in the 

ventral/anterior hippocampus (Nadel, Preston, above; Brun et al., 2008; 

Kjelstrup et al. 2008; Royer et al., 2010; Komorowski et al., 2013; Collin et al., 

2015; Schlichting et al., 2015). 

 

The themes and threads presented here set some of the challenges in our next 

decades of exploring the hippocampus. 
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