5,888 research outputs found

    Universum Prescription: Regularization using Unlabeled Data

    Full text link
    This paper shows that simply prescribing "none of the above" labels to unlabeled data has a beneficial regularization effect to supervised learning. We call it universum prescription by the fact that the prescribed labels cannot be one of the supervised labels. In spite of its simplicity, universum prescription obtained competitive results in training deep convolutional networks for CIFAR-10, CIFAR-100, STL-10 and ImageNet datasets. A qualitative justification of these approaches using Rademacher complexity is presented. The effect of a regularization parameter -- probability of sampling from unlabeled data -- is also studied empirically.Comment: 7 pages for article, 3 pages for supplemental material. To appear in AAAI-1

    Adaptive learning rates and parallelization for stochastic, sparse, non-smooth gradients

    Full text link
    Recent work has established an empirically successful framework for adapting learning rates for stochastic gradient descent (SGD). This effectively removes all needs for tuning, while automatically reducing learning rates over time on stationary problems, and permitting learning rates to grow appropriately in non-stationary tasks. Here, we extend the idea in three directions, addressing proper minibatch parallelization, including reweighted updates for sparse or orthogonal gradients, improving robustness on non-smooth loss functions, in the process replacing the diagonal Hessian estimation procedure that may not always be available by a robust finite-difference approximation. The final algorithm integrates all these components, has linear complexity and is hyper-parameter free.Comment: Published at the First International Conference on Learning Representations (ICLR-2013). Public reviews are available at http://openreview.net/document/c14f2204-fd66-4d91-bed4-153523694041#c14f2204-fd66-4d91-bed4-15352369404

    Computing the Stereo Matching Cost with a Convolutional Neural Network

    Full text link
    We present a method for extracting depth information from a rectified image pair. We train a convolutional neural network to predict how well two image patches match and use it to compute the stereo matching cost. The cost is refined by cross-based cost aggregation and semiglobal matching, followed by a left-right consistency check to eliminate errors in the occluded regions. Our stereo method achieves an error rate of 2.61 % on the KITTI stereo dataset and is currently (August 2014) the top performing method on this dataset.Comment: Conference on Computer Vision and Pattern Recognition (CVPR), June 201
    corecore