453 research outputs found

    The Impact of After-School Programs: Motivation for Success in Low-Income Youth

    Get PDF
    Evidence that after-school programs can have educational benefits for youth, and that program quality matters is growing (Yohalem et al., 2009). Specifically, existing literature suggests that federal funding is allocated towards "high quality" programs with the goal of helping youth do better in school (After School Alliance, 2009; U.S. Department of Education, 2009), and that both structure (Fauth et al., 2007; Vandell & Corasaniti, 1988) and adult involvement (Pierce et al., 1999; Roffman et al., 2001) are considered to be elements of high quality programs. To support the rationale that it is important to provide evidence to continue investing in after-school programs that help youth achieve academically, it is imperative to first understand why there is a relation between quality of an after-school program and academic outcome. The current study aimed to address the mechanisms behind why after-school program quality matters for academic engagement in youth. Specifically, the current study employed an evidence-based framework to test how aspects of motivation (e.g., competence and relatedness) can be positively related to academic engagement in 57 low-income school-age children. Although not confirming the direct association between after-school program quality and academic engagement, findings suggest that children's sense of competence and aspects of relatedness are significantly and positively related to how engaged they are in school. Implications, such as incorporating the developmental needs of children in after-school programs, and the need to study these associations within other after-school programs serving low-income youth, are discussed

    Spatiotemporal dynamics of the postnatal developing primate brain transcriptome.

    Get PDF
    Developmental changes in the temporal and spatial regulation of gene expression drive the emergence of normal mature brain function, while disruptions in these processes underlie many neurodevelopmental abnormalities. To solidify our foundational knowledge of such changes in a primate brain with an extended period of postnatal maturation like in human, we investigated the whole-genome transcriptional profiles of rhesus monkey brains from birth to adulthood. We found that gene expression dynamics are largest from birth through infancy, after which gene expression profiles transition to a relatively stable state by young adulthood. Biological pathway enrichment analysis revealed that genes more highly expressed at birth are associated with cell adhesion and neuron differentiation, while genes more highly expressed in juveniles and adults are associated with cell death. Neocortex showed significantly greater differential expression over time than subcortical structures, and this trend likely reflects the protracted postnatal development of the cortex. Using network analysis, we identified 27 co-expression modules containing genes with highly correlated expression patterns that are associated with specific brain regions, ages or both. In particular, one module with high expression in neonatal cortex and striatum that decreases during infancy and juvenile development was significantly enriched for autism spectrum disorder (ASD)-related genes. This network was enriched for genes associated with axon guidance and interneuron differentiation, consistent with a disruption in the formation of functional cortical circuitry in ASD

    Integrative Functional Genomic Analyses Implicate Specific Molecular Pathways and Circuits in Autism

    Get PDF
    SummaryGenetic studies have identified dozens of autism spectrum disorder (ASD) susceptibility genes, raising two critical questions: (1) do these genetic loci converge on specific biological processes, and (2) where does the phenotypic specificity of ASD arise, given its genetic overlap with intellectual disability (ID)? To address this, we mapped ASD and ID risk genes onto coexpression networks representing developmental trajectories and transcriptional profiles representing fetal and adult cortical laminae. ASD genes tightly coalesce in modules that implicate distinct biological functions during human cortical development, including early transcriptional regulation and synaptic development. Bioinformatic analyses suggest that translational regulation by FMRP and transcriptional coregulation by common transcription factors connect these processes. At a circuit level, ASD genes are enriched in superficial cortical layers and glutamatergic projection neurons. Furthermore, we show that the patterns of ASD and ID risk genes are distinct, providing a biological framework for further investigating the pathophysiology of ASD

    Profiling allele-specific gene expression in brains from individuals with autism spectrum disorder reveals preferential minor allele usage.

    Get PDF
    One fundamental but understudied mechanism of gene regulation in disease is allele-specific expression (ASE), the preferential expression of one allele. We leveraged RNA-sequencing data from human brain to assess ASE in autism spectrum disorder (ASD). When ASE is observed in ASD, the allele with lower population frequency (minor allele) is preferentially more highly expressed than the major allele, opposite to the canonical pattern. Importantly, genes showing ASE in ASD are enriched in those downregulated in ASD postmortem brains and in genes harboring de novo mutations in ASD. Two regions, 14q32 and 15q11, containing all known orphan C/D box small nucleolar RNAs (snoRNAs), are particularly enriched in shifts to higher minor allele expression. We demonstrate that this allele shifting enhances snoRNA-targeted splicing changes in ASD-related target genes in idiopathic ASD and 15q11-q13 duplication syndrome. Together, these results implicate allelic imbalance and dysregulation of orphan C/D box snoRNAs in ASD pathogenesis

    Large-scale associations between the leukocyte transcriptome and BOLD responses to speech differ in autism early language outcome subtypes.

    Get PDF
    Heterogeneity in early language development in autism spectrum disorder (ASD) is clinically important and may reflect neurobiologically distinct subtypes. Here, we identified a large-scale association between multiple coordinated blood leukocyte gene coexpression modules and the multivariate functional neuroimaging (fMRI) response to speech. Gene coexpression modules associated with the multivariate fMRI response to speech were different for all pairwise comparisons between typically developing toddlers and toddlers with ASD and poor versus good early language outcome. Associated coexpression modules were enriched in genes that are broadly expressed in the brain and many other tissues. These coexpression modules were also enriched in ASD-associated, prenatal, human-specific, and language-relevant genes. This work highlights distinctive neurobiology in ASD subtypes with different early language outcomes that is present well before such outcomes are known. Associations between neuroimaging measures and gene expression levels in blood leukocytes may offer a unique in vivo window into identifying brain-relevant molecular mechanisms in ASD

    A Highly Conserved Program of Neuronal Microexons Is Misregulated in Autistic Brains

    Get PDF
    SummaryAlternative splicing (AS) generates vast transcriptomic and proteomic complexity. However, which of the myriad of detected AS events provide important biological functions is not well understood. Here, we define the largest program of functionally coordinated, neural-regulated AS described to date in mammals. Relative to all other types of AS within this program, 3-15 nucleotide “microexons” display the most striking evolutionary conservation and switch-like regulation. These microexons modulate the function of interaction domains of proteins involved in neurogenesis. Most neural microexons are regulated by the neuronal-specific splicing factor nSR100/SRRM4, through its binding to adjacent intronic enhancer motifs. Neural microexons are frequently misregulated in the brains of individuals with autism spectrum disorder, and this misregulation is associated with reduced levels of nSR100. The results thus reveal a highly conserved program of dynamic microexon regulation associated with the remodeling of protein-interaction networks during neurogenesis, the misregulation of which is linked to autism

    From early markers to neuro-developmental mechanisms of autism

    Get PDF
    A fast growing field, the study of infants at risk because of having an older sibling with autism (i.e. infant sibs) aims to identify the earliest signs of this disorder, which would allow for earlier diagnosis and intervention. More importantly, we argue, these studies offer the opportunity to validate existing neuro-developmental models of autism against experimental evidence. Although autism is mainly seen as a disorder of social interaction and communication, emerging early markers do not exclusively reflect impairments of the “social brain”. Evidence for atypical development of sensory and attentional systems highlight the need to move away from localized deficits to models suggesting brain-wide involvement in autism pathology. We discuss the implications infant sibs findings have for future work into the biology of autism and the development of interventions
    corecore