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SUMMARY

Genetic studies have identified dozens of autism
spectrumdisorder (ASD) susceptibility genes, raising
two critical questions: (1) do these genetic loci
converge on specific biological processes, and (2)
where does the phenotypic specificity of ASD arise,
given its genetic overlap with intellectual disability
(ID)? To address this, we mapped ASD and ID risk
genes onto coexpression networks representing
developmental trajectories and transcriptional pro-
files representing fetal and adult cortical laminae.
ASD genes tightly coalesce in modules that implicate
distinct biological functions during human cortical
development, including early transcriptional regula-
tion and synaptic development. Bioinformatic ana-
lyses suggest that translational regulation by FMRP
and transcriptional coregulation by common tran-
scription factors connect these processes. At a cir-
cuit level, ASD genes are enriched in superficial
cortical layers and glutamatergic projection neurons.
Furthermore, we show that the patterns of ASD and
ID risk genes are distinct, providing a biological
framework for further investigating the pathophysi-
ology of ASD.
INTRODUCTION

Autism spectrum disorder (ASD) is a heterogeneous neurodeve-

lopmental disorder in which hundreds of genes have been impli-

cated (Berg and Geschwind, 2012; Geschwind and Levitt, 2007).

Analysis of copy number variation (CNV) and exome sequencing

have identified rare variants that alter dozens of protein-coding
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genes in ASD, none of which account for more than 1% of

ASD cases (Devlin and Scherer, 2012). This and the fact that a

significant fraction (40%–60%) of ASD is explained by common

variation (Klei et al., 2012) point to a heterogeneous genetic

architecture.

These findings raise several issues. Based on the background

human mutation rate (MacArthur et al., 2012), most genes

affected by only one observed rare variant to date are likely false

positives that do not increase risk for ASD (Gratten et al., 2013). It

is therefore essential to develop approaches that prioritize

singleton variants, especially missense mutations. Furthermore,

given the heterogeneity of ASD, it would be valuable to identify

common pathways, cell types, or circuits disrupted within ASD

itself. Recent studies combining gene expression, protein-

protein interactions (PPIs), and other systematic gene annotation

resources suggest some molecular convergence in subsets of

ASD risk genes (Ben-David and Shifman, 2013; Gilman et al.,

2011; Sakai et al., 2011; Voineagu et al., 2011). Yet, it remains

unclear how the large number of genes implicated through

different methods may converge to affect human brain develop-

ment, which is critical to a mechanistic understanding of ASD

(Berg andGeschwind, 2012). Additionally, ASD has considerable

overlapwith ID at the genetic level, so identifyingmolecular path-

ways and circuits that confer the phenotypic specificity of ASD

would be of considerable utility (Geschwind, 2011; Matson and

Shoemaker, 2009).

Here, we took a stepwise approach to determine whether

genes implicated in ASD affect convergent pathways during

in vivo human neural development and whether they are en-

riched in specific cells or circuits (Figure 1A). First, we con-

structed transcriptional networks representing genome-wide

functional relationships during fetal and early postnatal brain

development and mapped genes from multiple ASD and ID

resources to these networks. We then assessed shared neurobi-

ological function among these genes, including coregulatory

relationships and enrichment in layer-specific patterns from
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Figure 1. Methodological Overview and Coexpression Network Analysis

(A) Flowchart of the overall approach.

(B) Network analysis dendrogram showing modules based on the coexpression topological overlap of genes throughout development. Color bars below give

information on module membership, gene biotype, cortical region specificity, age trajectory, and robustness of module assignment.

(C) Module characterization, including GO enrichment and trajectory throughout development. The fit line represents locally weighted scatterplot smoothing

(Extended Experimental Procedures). GO enrichments are adjusted for multiple comparisons (FDR < 0.05), and reported Z scores represent relative enrichment in

the module compared to all cortex-expressed genes, with the red line at Z = 2.

See also Table S1 and Figure S1.
microdissected human fetal and adult primate cortical laminae.

We used validation in independent in vivo and in vitro expression

data and additional functional evidence (shared annotated path-

ways and PPIs) to confirm shared coexpression and function

among genes, and we replicated the enrichment analyses in in-

dependent data to ensure robustness. Our integration of an un-
C

supervised network analysis with large gene sets from multiple

resources permits rigorous interrogation of biological conver-

gence in ASD that takes its heterogeneity into consideration

and enables comparison of ASD with ID. In addition, we have

made these data accessible for biologists by creating an interac-

tive network web browser (Experimental Procedures).
ell 155, 1008–1021, November 21, 2013 ª2013 Elsevier Inc. 1009



RESULTS

Genome-wide Coexpression Networks Reflect
Biological Processes Essential to Human Neocortical
Development
We reasoned that transcriptomic data from human neocortex

would inform our understanding of ASD pathophysiology, as

the cerebral cortex has been consistently implicated in ASD

pathophysiology by multiple modalities (Amaral et al., 2008;

Ecker et al., 2012; Geschwind, 2011; Rubenstein, 2011; Voi-

neagu et al., 2011). We focused on gene expression from cortical

development spanning postconception week (PCW) 8 to month

12 after birth, as this time period reflects many critical molecular

processes that orchestrate brain circuit formation that could be

disrupted by genetic hits in ASD (Andersen, 2003; Courchesne

et al., 2011).

We constructed networks of gene relationships agnostic to

ASD candidate genes based on BrainSpan whole-genome tran-

scriptomic data collected by RNA-seq (BrainSpan, 2013). We

applied signed weighted gene coexpression network analysis

(WGCNA; Experimental Procedures; Zhang and Horvath, 2005)

and identified 17 coexpression modules (labeled numerically,

e.g., M8, and by color, e.g., magenta, see Table S1B [available

online] for module details). These modules represent genes

that share highly similar expression patterns during cortical

development (Figure 1B). Several additional analyses show

that these modules identify highly significant shared expression

patterns that are replicated in independent data from both in vivo

and in vitro human neural development (Figures S1A–S1C and

Extended Experimental Procedures).

First, we investigated eachmodule’s developmental trajectory

by calculating the module eigengene (ME, the first principal

component of themodule) and assessed shared function among

genes within the module by enrichment for Gene Ontology (GO)

annotation terms. Representative examples for up- and downre-

gulatedmodules are shown in Figure 1C. MEs for M13, M16, and

M17 increase during early cortical development and are each

enriched for the GO term synaptic transmission (Figure 1C).

M16 is upregulated the earliest, starting at PCW 10 and its

hubs (most interconnected genes based on correlation to the

ME, kME) include genes coding for the structural synaptic pro-

teins SV2A and NRXN1. M16 GO terms include cation trans-

porter activity, homophilic cell adhesion, and nervous system

development, which is consistent with early development of

synaptic ultrastructure. M17 represents a later phase of synaptic

maturation, as it is upregulated after PCW 13, and its hubs

include CAMK2B and CACNA1C, which are important for cal-

cium-dependent regulation of synaptic activity. M13 increases

last, after PCW 16, and its hubs include the NMDA and GABA

receptor subunits GRIN2A and GABRA1, whereas GO terms

include substrate-specific channel activity and regulation of

neuronal synaptic plasticity. These three modules have closely

aligned but distinct developmental trajectories that likely reflect

sequential phases of synaptic development, maturation, and

function, all of which are essential to the development of the ce-

rebral cortex.

In contrast, M2 and M3 have anticorrelated trajectories to

M13, M16, and M17 (r = �0.46 to �0.96; Table S1B) and are
1010 Cell 155, 1008–1021, November 21, 2013 ª2013 Elsevier Inc.
enriched in GO terms associated with DNA binding and tran-

scriptional regulation (Figure 1C). Expression in M3 is initially

upregulated and then decreases after PCW 12, suggesting that

its functions may be most important prior to M2, which is upre-

gulated after PCW 10 and peaks later (PCW 12 to PCW 22).

Given the GO enrichment and anticorrelation to the synaptic

module MEs, genes in these modules may be critical to orches-

trating processes such as progenitor proliferation and cell fate

specification via initial repression followed by derepression of

neuronal genes (Srinivasan et al., 2012). Furthermore, many of

the genes found in M2 andM3 are part of well-studied chromatin

remodeling complexes, most notably the BAF complex (ARID1A

and SMARCA4 in M2; ARID1B, SMARCB1, SMARCC1,

SMARCC2, SMARCD1, ARID2, DPF2, BCL11A, BCL11B, and

ACTL6A in M3), which has recently been linked to neural differ-

entiation and neurodevelopmental disorders (Ronan et al.,

2013; Yoo et al., 2009).

Because positive correlations among genes also reflect pair-

wise interactions between proteins (Ramani et al., 2008), enrich-

ment for protein-protein interactions within modules provides an

independent line of validation for shared function in these mod-

ules at the protein level. We combined all known PPIs from

InWeb (Rossin et al., 2011) and BioGRID (Stark et al., 2006)

into one network, comprising 251,881 interactions among

18,384 proteins, and observed that 12/17 of all coexpression

modules, including all the modules in Figure 1C, are enriched

for PPI after stringent multiple testing correction (p < 0.003, Table

S1B). Overall, 10/17 coexpression modules are preserved in in-

dependent gene expression data sets, enriched for GO terms,

and enriched for PPI. An additional 2/17 modules are enriched

for two of these three criteria. These results demonstrate the util-

ity of a systems biology approach—instead of analyzing lists of

thousands of genes regulated during development, we focused

on this set of 12 reproducible and biologically meaningful

modules sharing distinct expression patterns and biological

functions. An interactive network is available at our website for

graphical exploration of individual genes in these modules, as

well as their relationships with each other (Experimental

Procedures).

Genes Implicated in ASDAre Highly Coexpressed during
Human Cortical Development
We next asked whether genes associated with risk for ASD

converge on common biological processes. We compiled a set

of 155 ASD genetic risk candidates from the Simons Foundation

Autism Research Initiative (SFARI) AutDB database (Basu et al.,

2009), which we refer to as SFARI ASD. The SFARI ASD list is a

manually curated set of candidate genes implicated by common

variant association, candidate gene studies, genes within ASD-

associated CNV, and, to a lesser extent, syndromic forms of

ASD (Experimental Procedures). We mapped this gene set to

the protein-coding genes in the developmental coexpression

network and observed that SFARI ASD genes are most overrep-

resented in M16 (p = 0.0024; odds ratio [OR] = 2.9; 95% confi-

dence interval = [1.4–5.5]; false discovery rate [FDR] < 0.05)

and less so in M13 and M17 (Figure 2A).

We also examined a set of ASD genes previously shown to be

dysregulated in postmortem ASD temporal and frontal cortex
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Figure 2. Enrichment of SFARI ASD,

asdM12, and ID Genes in Developmental

Networks

(A) Module-level enrichment for gene sets from a

curated set of ASD risk genes (SFARI ASD), a

curated set of ID genes (‘‘ID all’’), and an unbiased

set of ASD risk genes (asdM12). Overlapping

(ASD/ID overlap) and nonoverlapping sets (‘‘ASD

only’’ and ‘‘ID only’’) are also shown. All enrichment

values for overrepresented lists with p < 0.05, OR >

1 are shown to demonstrate enrichment trends

(*p < 0.05 and **FDR < 0.05). Heatmap colors for p

values reflect enrichment trends; p values for gene

sets with OR < 1 can be seen in Table S2B.

(B–D) These panels show network plots for M13,

M16, and M17, respectively. Most hub genes

overlapping with SFARI ASD and asdM12

enrichment are not the same, showing that

enrichment of these two sets is not driven by a

narrow shared subset of genes. Network plots

comprise the top 200 connected genes (based

on kME, a measure of intramodular connectivity)

and their top 1,000 connections in the subnet-

work. By definition, all edges in the network

reflect positive correlations. Genes with mem-

bership in SFARI ASD, asdM12, or the ‘‘ID all’’

list are labeled and plotted according to multi-

dimensional scaling of gene expression correla-

tions, which graph genes with similar expression

patterns closer to each other.

See also Table S2.
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(asdM12; Voineagu et al., 2011), which represents a shared

molecular pathology in ASD brain identified in an unbiased,

genome-wide manner. The asdM12 gene set was strongly

enriched in the same three modules as SFARI ASD genes,

M13, M16, and M17 (asdM12-M13; p = 3.0 3 10�15; OR 3.6

[2.7–4.8]; asdM12-M16; p = 3.5 3 10�15; OR 3.9 [2.8–5.3];

asdM12-M17; p = 1.0 3 10�7; OR 2.5 [1.8–3.4]; each at FDR <

0.05). A remarkable 42% of asdM12 and 25% of the SFARI

ASD sets are found in one of these three modules. Our analysis,

which uses gene sets identified based on different methods (only

15 genes overlap between SFARI ASD and asdM12), converges

onto three modules involved in prenatal and early postnatal syn-

aptic development.

We next hypothesized that mapping ID genes to this network

would enable us to assess whether ASD susceptibility genes

show any specificity in their developmental expression patterns.

We compiled an extensive set of high confidence genes impli-

cated in monogenic forms of ID frommultiple publications (Inlow

and Restifo, 2004; Lubs et al., 2012; Ropers, 2008; van Bok-

hoven, 2011), referred to as ‘‘ID all’’ (see Experimental Proce-

dures). Remarkably, this set of 401 genes (of which 364 are

expressed in human neocortex) is not enriched in any of the 12

coexpression modules. Importantly, this lack of enrichment is

at a relaxed threshold that reduces the risk of false negatives (un-

corrected p > 0.05). Removing the small set of 37 genes (<10%)

that overlap between ASD and ID to establish exclusive sets

(‘‘ASD only’’ and ‘‘ID only’’) further confirms that ASD genes

exhibit enrichment, whereas ID genes do not (Figure 2A and Ta-

ble S2B). Thus, it is genes connected with the ASD phenotype

that are enriched in three specific transcriptional modules related

to synaptic function during development, but not those that have

been related solely to ID.

Rare De Novo Variants Are Highly Enriched in Two
Coexpression Modules in Early Fetal Development
Additional evidence implicating specific genes in ASD comes

from whole-exome sequencing in families (Iossifov et al., 2012;

Neale et al., 2012; O’Roak et al., 2012b; Sanders et al., 2012),

which has identified many rare protein-disrupting variants

(nonsense, splice site, and frameshift) overrepresented in in-

dividuals with ASD compared to their unaffected siblings

(OR > 2). This evidence is largely distinct from the evidence impli-

cating genes in SFARI ASD and asdM12, as it is from purely

noninherited, rare variation discovered in an unbiased,

genome-wide manner. We therefore asked whether genes

affected by protein altering rare de novo variation (RDNV) in

ASD probands shared biological function. We also tested silent

RDNVs because they should not exhibit a similar pattern of func-

tional enrichment, providing a key control for gene size, GC con-

tent, and other features affecting mutability (Michaelson et al.,

2012).

We first tested for enrichment using RDNVs from three studies

sharing similar coverage criteria and variant calling methodology

(Neale et al., 2012; O’Roak et al., 2012b; Sanders et al., 2012),

representing 622 ASD probands and 222 unaffected siblings.

Strikingly, genes expressed during development and affected

by protein-disrupting RDNVs in probands (60 genes, Table

S2A, Discovery Set) are significantly enriched in two modules,
1012 Cell 155, 1008–1021, November 21, 2013 ª2013 Elsevier Inc.
M2 and M3, which exhibit highly similar developmental trajec-

tories and functional enrichment indicative of remarkable biolog-

ical specificity. Eight genes harboring protein-disrupting RDNVs

are enriched in M2 (p = 0.006; OR = 3.2 [1.3–6.8]; FDR < 0.05),

and ten are enriched in M3 (p = 0.0011; OR = 3.6 [1.6–7.2];

FDR < 0.05). A trend for enrichment is observed for M16 as

well, but this does not pass the FDR threshold. For comparison,

genes affected by RDNVs in unaffected siblings or affected by

silent mutations are not enriched in any modules (Table S2B, p

> 0.05). Because missense RDNVs are only weakly overrepre-

sented in ASD (Sanders et al., 2012), we reasoned that overlap

with network modules might prioritize specific subsets of this

RDNV class. We find that a subset of missense RDNV affected

genes is overrepresented in the same pathways as the more

deleterious protein-disrupting RDNVs (M2 and M3; Table S2B).

Taken together, out of 385 protein-disrupting or missense

RDNV-affected genes expressed in brain, 34 are found in M2

(p = 2.9 3 10�4; OR = 2.1 [1.4–3.0]; FDR < 0.05) and 41 in M3

(p = 2.3 3 10�5; OR = 2.2 [1.5–3.1]; FDR < 0.05). Furthermore,

the combined set of protein-disrupting and missense RDNVs

from unaffected siblings was not found enriched in any modules

(p > 0.05).

We further validated the observed RDNV enrichment pattern in

M2 and M3 in an independent set of patients from a study with

more stringent RDNV calling criteria (Iossifov et al., 2012). In

this additional set of 343 ASD probands and unaffected siblings,

we found that the patterns of RDNV enrichment replicated, with

the combined protein-disrupting and missense RDNV sets from

ASD probands enriched specifically in M2 and M3 (p < 0.05) and

RDNVs from siblings and silent RDNVs not enriched in any set

(Table S2B; Replication Set). Combining all four studies, we

find that, out of 598 protein-disrupting or missense RDNV-

affected genes expressed in cortex, 52 are in M2 (p = 9.6 3

10�6; OR = 2.0 [1.5–2.8]), and 61 are in M3 (p = 8.5 3 10�7;

OR = 2.1 [1.6–2.8]). Importantly, the enrichment pattern across

modules is not only replicated in the independent set but is stron-

ger in the combined set, is robust to perturbations in module

composition (Figure S3A), and is not driven by variants from

any one study (Tables S2C and S2D). We show the enrichment

pattern of this combined set across 965 ASD probands and

565 unaffected siblings in Figure 3A and use this combined set

for the remainder of our analyses. Furthermore, modules

showing weak enrichment in some mutation categories of the

discovery set (M11, M16 at p < 0.05, but not FDR < 0.05) did

not replicate at p < 0.05 in the replication set and are not enriched

when considering all four studies together (Figure 3A).

We next asked whether M2 and M3 prioritized functional sub-

sets of genes with RDNVs. We confirmed that RDNV-affected

genes in M2 and M3 are significantly enriched for interactions

at a protein level (Figures S2A–S2D) and highlight genes that

are both PPI hubs and coexpression hubs in Figures 3B and

S3C. Furthermore, M2 and M3 genes harboring protein disrupt-

ing or missense RDNVs are also more dosage sensitive, as evi-

denced by the significant increase in the probability of haploin-

sufficiency (P[HI], Extended Experimental Procedures) among

genes affected by these mutation classes (Huang et al., 2010;

Luo et al., 2012). This is consistent with the heterozygous state

of variants observed in ASD probands. Overall, a remarkable
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Figure 3. Enrichment of Genes Affected by

RDNVs in Developmental Networks

(A) Module-level enrichment for multiple cate-

gories of RDNV in ASD affected probands and

unaffected siblings combined across four studies.

M2 and M3 are strongly enriched for protein dis-

rupting and missense RDNV-affected genes in

probands. Enrichment for genes affected by silent

RDNVs in probands and RDNV gene sets affected

in siblings represent control gene sets and do not

show enrichment. All enrichment values for over-

represented lists with p < 0.05, OR > 1 are shown

to demonstrate enrichment trends (*p < 0.05,

**validated in replication set). Heatmap colors for

p values reflect enrichment trends; p values for

gene sets with OR < 1 can be seen in Table S2B.

(B and C) (B) and (C) show network plots for M2

and M3, with all genes plotted and all genes car-

rying RDNVs displayed.

Network plots show all genes in the module with

protein disrupting or missense RDNV-affected

genes highlighted. For visualization, genes with

high intramodular connectivity (kME > 0.75) are

labeled in black, and the rest are labeled in gray. By

definition, all edges in the network reflect positive

correlations. The top 1,000 connections are

shown, and genes are plotted according to the

multidimensional scaling of coexpression as in

Figure 2. See also Figures S2 and S3 and Table S2.
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proportion (113/598 [19%]) of genes affected by known RDNVs

are coexpressed in two modules reflecting similar temporal

trends of high expression in cortex during the neurodevelopmen-

tal period of early neuronal fate determination, migration, and

cortical lamination. Of note, as with M13, M16, and M17, which

were enriched for asdM12 and SFARI ASD, ID genes did not

show enrichment in M2 or M3 (p > 0.05).

We also observed that the SFARI ASD genes and asdM12

genes, which are enriched for inherited common variants in

ASD (small average effect size), affect the synaptic modules,

M13,M16, andM17. In contrast, the noninherited (larger average

effect size) RDNVs preferentially affect the early transcriptional

regulation modules (Extended Experimental Procedures). We

emphasize that this is not absolute, asM16 includes some genes

harboring RDNVs (e.g., in SCN2A, SHANK2, and NRXN1; Fig-

ure 2A). To formally assess common variant enrichment using

independent data, we compared ASDGWA signals across these

modules (Extended Experimental Procedures). Genes in M13

and M16 were more strongly affected by common variation

than M2 or M3 in at least one of two ASD GWA studies (Anney

et al., 2012; Wang et al., 2009) (Figure S3E). This is consistent

with susceptibility of distinct biological processes for different

mutational classes. In general, we predict that more severe neu-

rodevelopmental consequences would result from disrupting

early transcriptional dysregulation during neuronal proliferation

and differentiation, as compared with later disruption of synaptic

development and neuronal function.

ASD Gene-Enriched Modules Are Linked by
Translational and Transcriptional Regulation
Upregulated and downregulated modules are highly anticorre-

lated throughout development, so we hypothesized that com-

mon molecular regulatory relationships could potentially link

genes within these modules. We first used a set of FMRP-RNA

interactors from a crosslinking and immunoprecipitation (CLIP)

experiment (Darnell et al., 2011) because Iossifov et al. (2012)

had previously shown that RDNVs identified in their exome

sequencing study were enriched in this class of genes. Remark-

ably, FMRP targets are specifically enriched in modules that also

contain ASD-related genes M2, M16, and M17 (FMRP-M2 p =

1.6 3 10�13; OR = 3.0 [2.3–3.9]; FMRP-M16 p = 2.4 3 10�29;

OR = 5.7 [4.3–7.6]; FMRP-M17 p = 9.3 3 10�10l OR = 2.4

[1.8–3.1]; all at FDR < 0.05; Figure 4A). This provides a strong,

independent line of evidence that translational regulation by

FMRP not only affects genes harboring RDNVs but also links

different molecular pathways that are coexpressed during early

fetal cortical development and are susceptible to diverse classes

of ASD genetic mutation.

We next tested whether ASD-associated modules are also

linked at the transcriptional level (Experimental Procedures).

We found 17 TFs that are predicted to link at least one upregu-

lated and one downregulated module based on binding site

enrichment (Figure 4B and Tables S3A and S3B). Many of the

genes encoding these TFs are expressed during fetal develop-

ment (Table S1A), have been previously implicated in relevant

neuronal functions, and have DNA binding targets that have

been experimentally characterized (Table S3B). For example,

MEF2A andMEF2C, bothmembers of a TF family regulating syn-
1014 Cell 155, 1008–1021, November 21, 2013 ª2013 Elsevier Inc.
aptic plasticity and glutamatergic synapse number (Ebert and

Greenberg, 2013), are enriched for binding targets in M2 and

M17, which are anticorrelated across development (Figures 4C

and 4D). SATB1, which is required for the development of

cortical interneurons (Close et al., 2012), ELF1, which is involved

in axonal guidance, and FOXO1, which regulates neuronal polar-

ity (de la Torre-Ubieta and Bonni, 2011) also link these two mod-

ules (Figures 4E and 4F). To provide further evidence that these

are experimentally plausible binding sites, we overlaid TF gene

bioinformatic predictions with chromatin immunoprecipitation

(ChIP) data where available, supporting many of these predicted

interactions, including 39% of MEF2A, 23% of MEF2C, and 87%

of ELF1 interactions (Figure 4C, 4D, and 4G and Extended

Experimental Procedures). These results implicate existing and

novel TFs as putative coregulators of ASD-associated gene

networks during neocortical development.

ASD-Associated Genes Exhibit Laminar and Cellular
Enrichment
Deficits in cortical patterning have been observed in ASD

(Voineagu et al., 2011), so we tested whether ASD-affected

genes are enriched in the developing laminae of fetal cortex

and the terminally differentiated laminae of adult cortex (Experi-

mental Procedures). We compared multiple ASD gene lists with

the ID gene sets for enrichment in laminae of the developing and

adult cortex and found a sharp contrast in laminar enrichment

between ASD and ID genes (Figures 5A and 5B). Additionally,

in adult, asdM12 exhibits strongly significant enrichment in L3

(Z > 2.7, FDR < 0.01), whereas other ASD lists follow a similar

trend of superficial layer enrichment (Z > 2, p < 0.05). In contrast,

the ‘‘ID all’’ and ‘‘ID only’’ gene sets follow a trend of lower layer

enrichment (Figure 5B), an across-layer pattern that is signifi-

cantly different from all of the ASD lists (Figures 5C and 5D and

Extended Experimental Procedures).

We also observed a similar trend in superficial layer (L2–L4)

enrichment for the modules that are enriched in asdM12 genes

(M13, M16, and M17; Figure 5F). M13 and M16 also exhibit

weaker enrichment in deeper layers (L5 and L6). Module-level

analysis in fetal brain also highlighted a difference between the

RDNV-enriched modules, M2 and M3. Although both M2 and

M3 are most highly expressed in early human fetal development

(prior to PCW17), M2 reaches its peak later and is enriched in the

cortical plate (CPi/CPo), whereas M3 peaks earlier, which is

consistent with its enrichment in the germinal zone (VZ, SZi,

and SZo; Figure 5E). In adult, this distinction is no longer present

(Figure 5F), with both M2 and M3 showing enrichment in super-

ficial layers (L2 and L4). We also asked whether any of these

gene sets or modules were enriched for cell-type-specific

marker expression patterns paralleling the observed laminar

enrichment. We observed enrichment for a set of well-curated

upper-layer glutamatergic neuron markers among asdM12,

M2, and M3 genes (Extended Experimental Procedures and Fig-

ures S4C and S4D), which agrees with the L2-4 enrichment of

asdM12 and ASD risk gene modules.

Figure 6A highlights adult layer-level expression patterns of

several strong ASD candidate genes with enriched expression

in superficial layers (e.g., SHANK2 and CNTNAP2) and shows

that many genes recurrently affected by protein-disrupting
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Figure 4. Translational and Transcriptional

Coregulation Connect Developmentally

Distinct ASD-Affected Modules

(A) Coexpression-based network plot of FMRP

interactions with genes in M2, M16, and M17 that

are either affected by RDNVs or are in an ASD

candidate list. Genes are plotted as in Figures 2

and 3 but now across modules, with FMRP placed

at the center.

(B) Summary of TF binding site (TFBS) enrichment

in modules for TFs that have evidence for function

in a neurodevelopmental context and link anti-

correlated modules. Dashed lines indicate enrich-

ment in the module for predicted binding sites.

(C–G) MEF2A, MEF2C, SATB1, FOXO1, and ELF1

are all enriched for their binding motifs in the up-

stream regions of ASD gene-enriched modules

following anticorrelated developmental patterns.

Network plots highlight genes with a predicted

binding site (light dashed arrow) for the TF (placed

at the center) contributing to this enrichment that

are also affected by RDNVs or in an ASD candi-

date list. Arrows representing a TFBS found in a

ChIP experiment are marked in dark blue.

For network plots, the top 1,000 positive con-

nections between genes are plotted, and node

size is proportional to connectivity within the

genes’ assigned module; therefore, larger nodes

are more central hubs. The outer color of each

node reflects its module membership, and coex-

pression edges in the network reflect positive

correlations. See also Tables S2 and S3.
RDNVs in the 965 ASD probands and an additional set of pa-

tients assessed by targeted sequencing (O’Roak et al., 2012a)

also show superficial layer enrichment (e.g., SCN2A and
Cell 155, 1008–1021, No
POGZ; Figure 6B). We use these laminae

for cell-marker enrichment analyses

because adult laminar expression pat-

terns are more clearly delineated relative

to PCW 15–21 (Figures 5A, 5E, S4A, and

S4B). Furthermore, neuronal migration in

humans persists into the third trimester,

and upper-layer neuronal identity is not

finalized until after PCW 28 (Bystron

et al., 2008). Out of the six genes with

recurrent RDNVs in probands in which

we can detect layer preference, five are

predominantly expressed in superficial

layers in adult. Some of the genes in Fig-

ure 6 also show expression in a lower

layer (NLGN1, SCN2A, ITPR1, and

MLL3), though superficial layer enrich-

ment is stronger (larger differential

expression t value in Table S1A).

DISCUSSION

Our analyses offer a genome-wide neuro-

biological context to begin to unify the ge-
netics of ASD, providing robust evidence of both molecular

pathway and circuit-level convergence (Figures 7A and 7B). Inte-

gration of ASD genes with developmental coexpression
vember 21, 2013 ª2013 Elsevier Inc. 1015
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A B Figure 5. Enrichment for Laminar Differen-

tial Expression of Gene Sets and Associated

Developmental Coexpression Modules in

Fetal Human and Adult Primate Cortex

(A) In fetal cortex, ASD sets (SFARI, asdM12, and

RDNV affected) are enriched for differential

expression in laminae containing postmitotic

neurons, whereas genes implicated in ID are

weakly enriched in germinal layers. A high Z score

for a gene set in a layer corresponds to differential

expression across the gene set in that layer.

(B) In adult cortex, asdM12 sets show strong

enrichment in layer 3, whereas ID genes are

weakly enriched in layer 5.

(C and D) Summing the Z score across layers in (A)

and (B) and comparing to randomly permuted sets

of genes of similar size demonstrates that, in both

fetal and adult cortex, the laminar distribution of

multiple ASD implicated gene sets is significantly

distinct from that of genes implicated only in ID.

(E) SFARI/asdM12-associated developmental

coexpression modules M13, M16, and M17 follow

enrichment trends similar to the SFARI/asdM12

gene set in fetal brain. However, the modules

strongly associated with the RDNV affected

genes, M2 and M3, show distinct enrichment

patterns.

(F) ASD-associated modules are predominantly

enriched in superficial layers 2–4 of adult cortex.

Additionally, M16 shows weak enrichment in L5.

In contrast to fetal cortex, M2 and M3 are in en-

riched in the same laminae in adult, suggesting

that they serve distinct functions during cortical

development that contribute to superficial cortical

layers 2–4.

Dashed lines in bar plots indicate Z = 2.7 (equiv-

alent to FDR = 0.01); error bars indicate 95%

bootstrapped CIs. Laminae: marginal zone (MZ),

outer/inner cortical plate (CPo/CPi), subplate (SP),

intermediate zone (IZ), outer/inner subventricular

zone (SZo/SZi), ventricular zone (VZ), and adult

cortical layers 2–6 (L2–6). See also Figure S4.
networks and laminar expression data connects multiple ASD

risk-enrichedmodules to glutamatergic neurons in upper cortical

layers, tying ASD risk genes to specific brain circuitry (Figure 7C).

The observation of convergent biology in ASD stands in striking

contrast with ID, which does not show the same level of develop-

mental or anatomical specificity. Laminar enrichment in the

‘‘ASD/ID overlap’’ genes shows a similar pattern as the ‘‘ASD

only’’ genes (in L2, Figure 5B). Therefore, disruption in ID genes

that also cause ASD affects superficial layers compared to

disruption in genes causing ID only. Our analyses lead to the pre-

diction that specific disruption of cortical-cortical connectivity—

by targeting upper layer glutamatergic neurons that predomi-

nantly comprise inter- and intrahemispheric projections, for

example—is more likely to affect core ASD phenotypes such

as social behavior, rather than general intellectual ability alone.

Our analysis further links specific molecules and pathways

to the cortical-cortical intra- and interhemispheric disconnection

that has been hypothesized as a shared circuit-level deficit

unifying diverse ASD etiologies (Belmonte et al., 2004; Gesch-

wind and Levitt, 2007). An illustrative example is the disruption
1016 Cell 155, 1008–1021, November 21, 2013 ª2013 Elsevier Inc.
of ARID1B, a BAF complex member that harbors a RDNV

and is a hub of M3. Severe mutations in ARID1B cause corpus

callosum abnormalities, ID, and ASD (Halgren et al., 2012;

Santen et al., 2012). Another BAF complex member, SMARCC2,

implicated by RDNVs in probands, controls cortical thickness

by repressing the pool of intermediate progenitors, which prefer-

entially contribute to forming cortical layers 2–4 (Tuoc et al.,

2013), providing another molecular link to inter- and intrahemi-

spheric connectivity. These analyses make the first systematic

connection between genes disrupted in ASD and this circuit-

level disruption. As additional genes in the early fetal coex-

pression modules are found to harbor recurrent RDNVs,

cortical-cortical connectivity will be a valuable phenotype to

assess in both animal models and human patients.

Translational regulation by FMRPduring fetal cortical develop-

ment and transcriptional coregulation of ASD candidate genes

provide another level of convergent biology in ASD and a rich

starting point for further experimental investigation. Notable

also are TFs that are predicted to drive the transcriptional core-

gulation of molecular and circuit-level processes, including
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Figure 6. Laminar Patterns for Genes Impli-

cated in ASD

(A) SFARI candidate genes for ASD.

(B) Genes with recurrent RDNV evidence across

studies. Genes not displayed include TBR1 (lower

layer enriched), CHD8 (no layer enrichment de-

tected), CUL3 (no layer enrichment detected), and

KATNAL2 (not detected in these data).

(C) Genes with high connectivity in M13, M16,

and M17.

(D) RDNV genes with high connectivity in M2

and M3.
aindicates membership in SFARI ASD, b indicates

membership in asdM12, c indicates the gene is

affected by a RDNV, and the asterisk indicates

recurrent RDNVs.

Color bar values represent scaled expression (SDs

from the mean-centered expression value across

layers). All genes shown have t > 2 for enrichment

in an upper layer (L2, L3, or L4) over background

and t < 2 for lower layers (L5 or L6). Regions:

dorsolateral prefrontal (DLPFC), orbitofrontal

(OFC), anterior central gyrus (ACG), primary motor

(M1), primary somatosensory (S1), primary audi-

tory (A1), higher-order visual area TE (TE), higher-

order visual area MT/5 (MT), secondary visual

cortex (V2), and primary visual cortex (V1).
MEF2A, MEF2C, and SATB1, which have binding site enrich-

ment in M2 and M17. This is intriguing in light of decreased

PVALB expression in ASD brain (Voineagu et al., 2011), the hy-

pothesized convergent mechanism of a shift in the excitation-in-

hibition balance in ASD (Rubenstein and Merzenich, 2003), and

the observation that SATB1 plays a key role in regulating cortical

PV+ and SST+ interneuron development (Close et al., 2012; De-

naxa et al., 2012). We speculate that M2 and M17 reflect pro-

cesses involved in the migration and differentiation of inhibitory

and excitatory cell populations whose balanced coregulation

may be essential to proper cortical development. These ana-

lyses underscore the notion that understanding the structure of

the transcriptional and chromatin regulatory networks underlying

cortical development and their relationship to translational con-

trol will better inform the genetic risk architecture of ASD.
Cell 155, 1008–1021, No
In addition to demonstrating biological

convergence, network analysis further al-

lowed us to stratify the full set of 684

RDNV-affected genes to a narrower list

of 113 genes (Table S1A) that we hypoth-

esize are more likely to confer increased

ASD risk based on their enrichment in

M2 and M3 and an elevated probability

of conferring a phenotype when haploin-

sufficient. Furthermore, we demonstrate

that the observed enrichment is specific

by comparison to silent RDNVs and unaf-

fected siblings’ RDNVs. As an example of

how to prioritize these candidates further

based on the functional relationships

summarized in Figure 7, we constructed
a list of candidates using Table S1A, filtering by expression dur-

ing development, membership in M2 or M3, high predicted hap-

loinsufficiency (P[HI] > 0.5), protein disrupting or missensemuta-

tion in probands, and either a layer preference (t > 2 for a

particular layer) or a cell-type preference (r > 0.2 for a cell type)

in Table S4. This yields a set of 24 candidates with a hypothe-

sized layer or cell-type phenotype for investigation. Among

these, TBR1 is known to harbor recurrent mutations, whereas

CHD3 is a member of the same gene family as CHD8, a gene

with strong recurrent de novo mutation evidence (O’Roak

et al., 2012a). Additionally, SMARCC1 and SMARCC2 are mem-

bers of the BAF complex, which is of particular interest because

it is statistically associated with ASD—6/28 BAF complex genes

are affected by RDNVs (p = 0.0015; OR = 5.7 [1.9–14.5]).

Remarkably, one of the genes in M2 implicated by our
vember 21, 2013 ª2013 Elsevier Inc. 1017
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Figure 7. Summary of Findings and Model

for Effects of ASD Implicated Gene Sets

(A) ASD risk genes from multiple sources were

enriched in five coexpression modules throughout

development—M2, M3, M13, M16, and M17.

(B) Early transcriptional regulators in M2/M3 are

enriched for RDNVs, whereas the later expressed

synaptic genes are associated with previously

studied ASD genes (biological process time pe-

riods adopted from Andersen [2003]).

(C) ASD genes are most consistently associated

with laminae containing postmitotic neurons dur-

ing early fetal development (broadly in IZ, SP, CPo/

CPi, andMZ) and superficial layers in adult (L2–L4).

Multiple modules are also strongly associated with

markers of upper-layer glutamatergic neurons in

adult cortex, suggesting many ASD genes prefer-

entially affect these cell types.

(B) and (C) also summarize that ID genes are largely

distinct from ASD genes in both developmental

trajectory and neocortical layer enrichment.

See also Table S4. Both (A) and (B) correspond to

the same timescale as marked by the axis on the

plot in (A). We summarize the strongly enriched

findings but note that weaker enrichment for other

patterns exists that may be important for subsets

of ASD. Individual genes can be prioritized for

biological validation using a combination of

network position, bioinformatic scores, and the

biological context highlighted here, as described in

the Discussion and as shown in Table S4.
prioritization is TOP1 (also highlighted in Figures 3B, and S2A,

and S2B), as it contains a missense RDNV, has a P(HI) of 0.99,

and is correlated with upper-layer glutamatergic neuronal

markers. TOP1 has been shown to regulate the transcrip-

tion of long transcripts preferentially implicated in ASD (King

et al., 2013). Therefore, M2 provides many potential

interactions to investigate at a mechanistic level, as it links

TOP1 with other regulators of chromatin structure expressed

during cortical development that include members of CCR4-

NOT complex (CNOT family) and chromodomain helicase

DNA-binding proteins (CHD), which have previously been linked

to the regulation of neuronal proliferation and differentiation

(Feng et al., 2013; Potts et al., 2011; Ronan et al., 2013; Zheng

et al., 2012).

In parallel work in this issue of Cell, Willsey et al. (2013) find

strongest convergence on fetal developmental coexpression

networks in frontal lobe by seeding with a subset of high-confi-

dence ASD genes identified by exome sequencing. Despite the

different analytical approaches, there is remarkable overlap be-

tween the developmental processes implicated by the gene net-

works identified in our studies. Although we see the strongest

cell type and layer enrichment in adult L2–L4, we also see a

signal in CPi during fetal development and a weaker signal in

L5–L6 of adult, which is consistent with a subset of genes

affecting lower-layer glutamatergic neurons. Together, our

studies highlight the importance of understanding the spatial

and temporal context of specific genes for future mechanistic

investigation.
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We also acknowledge several issues that challenged our

approach. Many of the genes we identified as putatively involved

in ASD do not have complete PPI data, P(HI) scores, TF binding

site information, or are not well studied in brain. This is one

reason why we rely most heavily on RNA-seq-based transcrip-

tome data, as they comprehensively represent relationships pre-

sent in the developing human brain in an unbiased manner. We

did not assess enrichment of genetic hits in other brain regions

across development, as sample size and cell-type heterogeneity

make it difficult to interpret coexpression across cytoarchitectur-

ally diverse brain regions such as cerebellum and amygdala,

which may also be involved in ASD (Amaral et al., 2008). We

also focused on single gene disruption in ASD and did not

include CNVs affectingmultiple genes to improve signal to noise.

Additionally, current genetic approaches favor de novo muta-

tion detection; as different classes of mutations (e.g., inherited

rare coding or noncoding regulatory variants) are identified, we

speculate that heritable variants will have less severe phenotypic

consequences and will affect genes in the modules related to

synaptic development and function, rather than earlier transcrip-

tional regulation. Likewise, it will also be useful to investigate

rare, inherited recessive ASD risk variants (Lim et al., 2013; Yu

et al., 2013) when sufficient data are available, so as to compare

it with other forms of genetic variation. Importantly, as larger sets

of individuals are sequenced, it will be essential to look at how

mutational effect relates to biological effect, as recent work (Yu

et al., 2013) has shown that ASD can result from milder hits to

the same proteins affected in more severe disorders associated



with severe ID. Here, we investigated a large composite list of

known ID genes that reflects multiple mutational mechanisms.

Certain subgroups of ID genes such as those implicated in

X-linked ID (Lubs et al., 2012) or those from de novo disruptions

in individuals with severe ID (de Ligt et al., 2012; Rauch et al.,

2012) overlap with genes in M2 and M3 that also have RDNVs

found in ASD. This is consistent with the observation that hits

in M2 and M3 are highly deleterious to brain development.

Although more specificity for these subgroups of ID genes may

arise as additional individuals are sequenced, our analyses indi-

cate that the degree of stage or regional specificity for ID genes is

far less than that observed in ASD.

The conclusions summarized in Figure 7 pass a stringent mul-

tiple comparisons cut-off; weaker enrichment patterns may

become more salient with higher-resolution tiling of gene

expression during development and increased sample sizes in

sequencing studies. To facilitate future studies, we have shared

the code used in this analysis (Extended Experimental Proce-

dures) and have provided a network browser for user-friendly

interactive exploration of specific genes, including links to other

public data (Experimental Procedures). We have shown how an

integrative approach, which is not driven by any small set of sam-

ples, candidate genes, or candidate hypotheses, can place het-

erogeneous genetic etiologies into a unifying structure. These

analyses provide aworking framework formechanistic investiga-

tion and hypothesis testing, which points to interactions between

genes in specific cell types and circuits, as well as the general

biological processes in which these genes are implicated.

EXPERIMENTAL PROCEDURES

Developmental Expression Data

BrainSpan developmental RNA-seq data (BrainSpan, 2013) summarized to

Gencode 10 (Harrow et al., 2006) gene-level reads per kilobasemillionmapped

reads (RPKM) values were used (Extended Experimental Procedures for data

preprocessing; see Table S1D for sample details). Only neocortical regions

were used in our analysis, and only genes with a normalized RPKM value of

1 in at least one region at one time point for 80% of the available samples

were considered expressed.

Weighted Gene Coexpression Network Analysis

We used the R package WGCNA (Langfelder et al., 2008) to construct coex-

pression networks, as previously done (Voineagu et al., 2011) and as

described in detail in the Extended Experimental Procedures. The modules

were characterized using GO Elite to control the network-wide FDR, with all

enriched pathways comprising at least ten genes at Z > 2 and FDR < 0.05

(Zambon et al., 2012). All network plots were constructed using the igraph

package in R (Csárdi and Nepusz, 2006).

Protein-Protein Interaction Enrichment

When assessing PPI enrichment in modules, a degree-matched permutation

analysis was applied in order to control for biological and methodological

biases in PPI data (see Extended Experimental Procedures for details).

Gene Sets

The SFARI ASD set was compiled using the online SFARI gene database,

AutDB.We used the ‘‘Gene Score,’’ which classifies evidence levels, to restrict

our set to those categorized as Syndromic (S) and evidence levels 1–4 (high-

confidence—minimal evidence). We obtained asdM12 and adsM16 from a

prior, independent gene expression study that profiled expression changes

in ASD cortex and applied WGCNA to identify modules of dysregulated genes

ASD (Voineagu et al., 2011). We curated ID genes from four reviews cataloging
C

genes causing ‘‘ID all’’ (Inlow and Restifo, 2004; Lubs et al., 2012; Ropers,

2008; van Bokhoven, 2011) resulting in 401 genes. For candidate lists, we

used the HUGO gene nomenclature to find updated gene symbols. We

obtained RDNVs from four publications (Iossifov et al., 2012; Neale et al.,

2012; O’Roak et al., 2012b; Sanders et al., 2012) and split them into discovery

and validation sets as discussed in the results (see Extended Experimental

Procedures for further details about gene sets).

Gene Set Overrepresentation

All enrichments of gene sets were performed using a two-sided Fisher’s exact

test with 95% confidence calculated according to the R function fisher.test.

The FDR was controlled across candidate ASD gene set enrichments, the dis-

covery RDNV set enrichment, and FMRP target enrichment (Table S2B). For

RDNV enrichment, we required an OR > 1 and an FDR-adjusted p value <

0.05 for enrichment in the discovery set and OR > 1 with p < 0.05 for validation

in the replication set. When claiming a lack of enrichment, we require an uncor-

rected p > 0.05 to reduce false negatives, as future studies that add expression

time points for networks and genes for enrichment may find enrichment in

pathways not significantly enriched here.

Transcription Factor Binding Site Enrichment

The top 200 genes in each module (ranked by kME) were used for TF motif

enrichment analysis. Enrichment for each TF motif in TRANSFAC (Matys

et al., 2003) was compared to three background data sets to ensure robust-

ness: 1,000 bp sequences upstream of all human genes, human CpG islands,

and the sequence of human chromosome 20 (Extended Experimental Proce-

dures). Only TFs with p < 0.05 across all backgrounds are considered

enriched. ChIP data were obtained from ENCODE (ENCODE Project Con-

sortium, 2011) and the ChIP enrichment analysis (Lachmann et al., 2010)

resource.

Layer-Specific and Cell-Type Marker Enrichment

We utilized human fetal neocortical laminar gene expression data sets from

BrainSpan at PCW 15/16 and PCW 21 and primate neocortical laminar gene

expression data from a published study (Bernard et al., 2012). For laminar

specificity, differential expression of each gene in each layer was calculated

against background, resulting in t values for each gene in each layer (Table

S1A). We quantified the skew of differential expression t values of each gene

set in each layer, applied a FDR cutoff across all enrichments in all layers

(Z = 2.7 and FDR = 0.01), and computed bootstrapped confidence intervals

to assess enrichment of gene sets in layers. To quantify cell-marker relation-

ships, we used an analogous method, replacing the t value by the correlation

of each gene to the first principal component of a set of known cell marker

genes in the adult layer data (Table S1A). Statistical comparison of enrichment

trends across layers between ASD and ID gene sets set was performed by

comparing the distribution of scores across layers using a permutation anal-

ysis (Extended Experimental Procedures).

Interactive Network Plot

We have made the coexpression network and associated gene-level data

available for the top 500 connections in each module in an interactive browser

at the following website (http://geschwindlab.neurology.ucla.edu/sites/all/

files/networkplot/ParikshakDevelopmentalCortexNetwork.html).

SUPPLEMENTAL INFORMATION

Supplemental Information includes Extended Experimental Procedures, four

figures, and four tables and can be found with this article online at http://dx.

doi.org/10.1016/j.cell.2013.10.031.
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