172 research outputs found

    Stress‐response balance drives the evolution of a network module and its host genome

    Get PDF
    Stress response genes and their regulators form networks that underlie drug resistance. These networks often have an inherent tradeoff: their expression is costly in the absence of stress, but beneficial in stress. They can quickly emerge in the genomes of infectious microbes and cancer cells, protecting them from treatment. Yet, the evolution of stress resistance networks is not well understood. Here, we use a two‐component synthetic gene circuit integrated into the budding yeast genome to model experimentally the adaptation of a stress response module and its host genome in three different scenarios. In agreement with computational predictions, we find that: (i) intra‐module mutations target and eliminate the module if it confers only cost without any benefit to the cell; (ii) intra‐ and extra‐module mutations jointly activate the module if it is potentially beneficial and confers no cost; and (iii) a few specific mutations repeatedly fine‐tune the module's noisy response if it has excessive costs and/or insufficient benefits. Overall, these findings reveal how the timing and mechanisms of stress response network evolution depend on the environment

    UCHL1/PGP 9.5 Dynamic in neuro-immune-cutaneous milieu : focusing on axonal nerve terminals and epidermal keratinocytes in psoriatic itch

    Get PDF
    Psoriasis is an immunogenetic skin disease manifesting as plaque lesions on the skin. Patients with psoriasis frequently suffer from itch, an unpleasant sensation causing a desire to scratch. Psoriatic itch is mainly transmitted by unmyelinated C-fibers; however, the exact molecular mechanism of psoriatic itch is still unexplained. Protein gene product 9.5 (PGP 9.5) is a panneurological marker commonly used for analysis of peripheral peptidergic and nonpeptidergic nerves and identification of cutaneous neuro-immune-endocrine cells. However, some studies suggested that nonneuronal cells, like keratinocytes, may also express PGP 9.5. This phenomenon might be linked with impaired axonal transport, keratinocyte injury, or dysfunctions of neuro-immune-cutaneous connections. The aim of this study was to analyze the expression of PGP 9.5 in psoriatic skin. We observed significantly altered density of PGP 9.5-positive axonal nerve terminals in pruritic lesional (p=0.04) and nonlesional psoriatic skin (p>0.001) compared with controls. In contrast, no significant differences were observed between psoriatic skin without itch and controls. Furthermore, PGP 9.5 expression by suprabasal keratinocytes (SBKs) was significantly increased in itchy skin lesions (p=0.007) compared to skin without itch, and a positive correlation was observed between PGP 9.5 expression and itch intensity (r=0.64; p=0.02). Our findings indicate changes in peripheral innervations and psoriatic keratinocytes, which may influence neuro-immune-cutaneous homeostasis and modulate itch transmission

    Designer cell signal processing circuits for biotechnology

    Get PDF
    Microorganisms are able to respond effectively to diverse signals from their environment and internal metabolism owing to their inherent sophisticated information processing capacity. A central aim of synthetic biology is to control and reprogramme the signal processing pathways within living cells so as to realise repurposed, beneficial applications ranging from disease diagnosis and environmental sensing to chemical bioproduction. To date most examples of synthetic biological signal processing have been built based on digital information flow, though analogue computing is being developed to cope with more complex operations and larger sets of variables. Great progress has been made in expanding the categories of characterised biological components that can be used for cellular signal manipulation, thereby allowing synthetic biologists to more rationally programme increasingly complex behaviours into living cells. Here we present a current overview of the components and strategies that exist for designer cell signal processing and decision making, discuss how these have been implemented in prototype systems for therapeutic, environmental, and industrial biotechnological applications, and examine emerging challenges in this promising field

    Phenotypic heterogeneity promotes adaptive evolution

    Get PDF
    Genetically identical cells frequently display substantial heterogeneity in gene expression, cellular morphology and physiology. It has been suggested that by rapidly generating a subpopulation with novel phenotypic traits, phenotypic heterogeneity (or plasticity) accelerates the rate of adaptive evolution in populations facing extreme environmental challenges. This issue is important as cell-to-cell phenotypic heterogeneity may initiate key steps in microbial evolution of drug resistance and cancer progression. Here, we study how stochastic transitions between cellular states influence evolutionary adaptation to a stressful environment in yeast Saccharomyces cerevisiae. We developed inducible synthetic gene circuits that generate varying degrees of expression stochasticity of an antifungal resistance gene. We initiated laboratory evolutionary experiments with genotypes carrying different versions of the genetic circuit by exposing the corresponding populations to gradually increasing antifungal stress. Phenotypic heterogeneity altered the evolutionary dynamics by transforming the adaptive landscape that relates genotype to fitness. Specifically, it enhanced the adaptive value of beneficial mutations through synergism between cell-to-cell variability and genetic variation. Our work demonstrates that phenotypic heterogeneity is an evolving trait when populations face a chronic selection pressure. It shapes evolutionary trajectories at the genomic level and facilitates evolutionary rescue from a deteriorating environmental stress.publishe

    Cell cycle-dependent variations in protein concentration

    Get PDF
    Computational modeling of biological systems has become an effective tool for analyzing cellular behavior and for elucidating key properties of the intricate networks that underlie experimental observations. While most modeling techniques rely heavily on the concentrations of intracellular molecules, little attention has been paid to tracking and simulating the significant volume fluctuations that occur over each cell division cycle. Here, we use fluorescence microscopy to acquire single cell volume trajectories for a large population of Saccharomyces cerevisiae cells. Using this data, we generate a comprehensive set of statistics that govern the growth and division of these cells over many generations, and we discover several interesting trends in their size, growth and protein production characteristics. We use these statistics to develop an accurate model of cell cycle volume dynamics, starting at cell birth. Finally, we demonstrate the importance of tracking volume fluctuations by combining cell division dynamics with a minimal gene expression model for a constitutively expressed fluorescent protein. The significant oscillations in the cellular concentration of a stable, highly expressed protein mimic the observed experimental trajectories and demonstrate the fundamental impact that the cell cycle has on cellular functions

    Effect of promoter architecture on the cell-to-cell variability in gene expression

    Get PDF
    According to recent experimental evidence, the architecture of a promoter, defined as the number, strength and regulatory role of the operators that control the promoter, plays a major role in determining the level of cell-to-cell variability in gene expression. These quantitative experiments call for a corresponding modeling effort that addresses the question of how changes in promoter architecture affect noise in gene expression in a systematic rather than case-by-case fashion. In this article, we make such a systematic investigation, based on a simple microscopic model of gene regulation that incorporates stochastic effects. In particular, we show how operator strength and operator multiplicity affect this variability. We examine different modes of transcription factor binding to complex promoters (cooperative, independent, simultaneous) and how each of these affects the level of variability in transcription product from cell-to-cell. We propose that direct comparison between in vivo single-cell experiments and theoretical predictions for the moments of the probability distribution of mRNA number per cell can discriminate between different kinetic models of gene regulation.Comment: 35 pages, 6 figures, Submitte

    Phenotypic variability in synthetic biology applications:Dealing with noise in microbial gene expression

    Get PDF
    The stochasticity due to the infrequent collisions among low copy-number molecules within the crowded cellular compartment is a feature of living systems. Single cell variability in gene expression within an isogenic population (i.e. biological noise) is usually described as the sum of two independent components: intrinsic and extrinsic stochasticity. Intrinsic stochasticity arises from the random occurrence of events inherent to the gene expression process (e.g. the burst-like synthesis of mRNA and protein molecules). Extrinsic fluctuations reflect the state of the biological system and its interaction with the intra and extracellular environments (e.g. concentration of available polymerases, ribosomes, metabolites, and micro-environmental conditions). A better understanding of cellular noise would help synthetic biologists design gene circuits with well-defined functional properties. In silico modelling has already revealed several aspects of the network topology’s impact on noise properties; this information could drive the selection of biological parts and the design of reliably-engineered pathways. Importantly, while optimizing artificial gene circuitry for industrial applications, synthetic biology could also elucidate the natural mechanisms underlying natural phenotypic variability. In this review, we briefly summarize the functional roles of noise in unicellular organisms and address their relevance to synthetic network design. We will also consider how noise might influence the selection of network topologies supporting reliable functions, and how the variability of cellular events might be exploited when designing innovative biotechnology applications

    Control of Hox transcription factor concentration and cell-to-cell variability by an auto-regulatory switch

    Get PDF
    The variability in transcription factor concentration among cells is an important developmental determinant, yet how variability is controlled remains poorly understood. Studies of variability have focused predominantly on monitoring mRNA production noise. Little information exists about transcription factor protein variability, as this requires the use of quantitative methods with single-molecule sensitivity. Using Fluorescence Correlation Spectroscopy (FCS), we have characterized the concentration and variability of 14 endogenously tagged TFs in live Drosophila imaginal discs. For the Hox TF Antennapedia, we investigated whether protein variability results from random stochastic events or is developmentally regulated. We found that Antennapedia transitioned from low concentration/high variability early, to high concentration/low variability later, in development. FCS and temporally resolved genetic studies uncovered that Antennapedia itself is necessary and sufficient to drive a developmental regulatory switch from auto-activation to auto-repression, thereby reducing variability. This switch is controlled by progressive changes in relative concentrations of preferentially activating and repressing Antennapedia isoforms, which bind chromatin with different affinities. Mathematical modeling demonstrated that the experimentally supported auto-regulatory circuit can explain the increase of Antennapedia concentration and suppression of variability over time
    • 

    corecore