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Stress-response balance drives the evolution of a
network module and its host genome
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Alexandre V Morozov3,6 & Gábor Balázsi1,7,8,*

Abstract

Stress response genes and their regulators form networks that
underlie drug resistance. These networks often have an inherent
tradeoff: their expression is costly in the absence of stress, but
beneficial in stress. They can quickly emerge in the genomes of
infectious microbes and cancer cells, protecting them from treat-
ment. Yet, the evolution of stress resistance networks is not well
understood. Here, we use a two-component synthetic gene circuit
integrated into the budding yeast genome to model experimentally
the adaptation of a stress response module and its host genome in
three different scenarios. In agreement with computational predic-
tions, we find that: (i) intra-module mutations target and elimi-
nate the module if it confers only cost without any benefit to the
cell; (ii) intra- and extra-module mutations jointly activate the
module if it is potentially beneficial and confers no cost; and (iii) a
few specific mutations repeatedly fine-tune the module’s noisy
response if it has excessive costs and/or insufficient benefits. Over-
all, these findings reveal how the timing and mechanisms of stress
response network evolution depend on the environment.
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Introduction

The number of human-designed biological systems has increased

rapidly since the inception of synthetic biology (Purnick & Weiss,

2009). Parts and concepts underlying synthetic biological constructs

have expanded quickly, feeding on general biological knowledge.

Conversely, synthetic biology has enormous but unexploited poten-

tial to inform other areas of biology, such as evolutionary biology

(Tanouchi et al, 2012b).

For example, gene regulatory networks that control the expression

of stress-protective genes have emerged through evolution (Lopez-

Maury et al, 2008) but can also be built de novo (Nevozhay et al,

2012; Tanouchi et al, 2012a). Depending on the details of gene regu-

lation, cells can survive because they respond to stress (Gasch et al,

2000); diversify non-genetically (hedge bets), independent of the

stress (Balaban et al, 2004; Thattai & van Oudenaarden, 2004; Levy

et al, 2012); or use a mixture of these two strategies (New et al,

2014). However, stress-protective gene expression can be costly or

toxic in the absence of stress (Andersson & Levin, 1999), or even in

the presence of stress when the expression level exceeds the require-

ment for survival (Nevozhay et al, 2012). Overall, the costs and bene-

fits of survival mechanisms create a tradeoff between maximizing

growth while also ensuring survival during stress. How mutations

alter stress response networks to improve fitness under such circum-

stances, especially in phenotypically heterogeneous populations

(Sumner & Avery, 2002), is an open problem in evolutionary biology.

Consider a stress response network module, consisting of a

stress-sensing transcriptional regulator and its stress-protective gene

target, which has arisen in a cell’s genome. Similar modules, such

as Tn10 (Hillen & Berens, 1994), toxin-antitoxin systems (Yama-

guchi et al, 2011), or bypass signaling (Hsieh & Moasser, 2007), can

arise rapidly by recombination, horizontal gene transfer, or inhi-

bitor-mediated alternate pathway activation. Considering their

impact on microbial and cancer drug resistance, it is important to

know how reproducibly and how quickly such stress defense

networks can adapt (Lobkovsky & Koonin, 2012). Yet, we currently

lack quantitative, hypothesis-driven understanding of how initially

suboptimal stress defense modules evolve inside the host genome,

especially in the presence of gene expression noise (Balázsi et al,

2011; Munsky et al, 2012; Sanchez & Golding, 2013). Although
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network evolution theory (Kauffman, 1993; Mason et al, 2004;

Kashtan & Alon, 2005) and laboratory evolution experiments

(Lenski & Travisano, 1994; Beaumont et al, 2009; Tenaillon et al,

2012; Toprak et al, 2012; Lang et al, 2013) have generated impor-

tant insights, they have provided largely descriptive, a posteriori

interpretations. Now there is a growing need for predictive, hypoth-

esis-driven, quantitative understanding of gene network evolution,

which requires making a priori predictions of mutation effects and

evolutionary dynamics that are tested experimentally (Wang et al,

2013). One option could be to study the evolution of small natural

regulatory modules (Dekel & Alon, 2005; Hsu et al, 2012; Quan

et al, 2012; van Ditmarsch et al, 2013). However, connections of

natural regulatory modules with the rest of the genome can be

significant (Maynard et al, 2010) and poorly characterized, thus

making predictive, quantitative understanding difficult. Synthetic

gene circuits (Elowitz & Leibler, 2000; Gardner et al, 2000; Stricker

et al, 2008; Moon et al, 2012; Nevozhay et al, 2013) represent a

better alternative, since they are small, consist of well-characterized

components, and typically lack direct regulatory interactions with

the host genome. However, it is unclear whether the evolution of

synthetic gene circuits (Yokobayashi et al, 2002; Sleight et al, 2010;

Poelwijk et al, 2011; Wu et al, 2014) can be predicted a priori,

especially with regard to gene expression heterogeneity.

We recently characterized the dynamics and fitness effects of

gene expression for a synthetic two-gene “positive feedback” (PF)

circuit (Fig 1A) integrated into the genome of the haploid single-

celled eukaryote Saccharomyces cerevisiae (Nevozhay et al, 2012).

This synthetic gene circuit consists of a well-characterized transcrip-

tional regulator (rtTA) and an antibiotic resistance gene (yEGFP::

zeoR). In the presence of tetracycline-analog inducers such as doxy-

cycline, rtTA activates both itself and yEGFP::zeoR by binding to two

tetO2 operator sites in two identical promoters (Fig 1A). This posi-

tive feedback is noisy, however, and thus, only a fraction of cells

switch to high expression of rtTA and yEGFP::zeoR. These cells

benefit from high gene expression, which protects them from the

antibiotic zeocin. Meanwhile, the same cells experience a cost from

rtTA activator expression toxicity, causing a tradeoff when zeocin is

present (Nevozhay et al, 2012). The fitness (division rate) of any

individual cell is the product of its rtTA expression cost and yEGFP::

zeoR expression benefit (Nevozhay et al, 2012), which varies from

cell to cell. Thus, quantitative knowledge of dynamics and fitness

effects makes the PF gene circuit an excellent model for studying

gene network evolution in tradeoff situations. Its design separates

stress (zeocin) from its adjustable cellular response (inducible

yEGFP::zeoR expression), facilitating predictive, quantitative under-

standing of how a stress response module adapts inside the host

genome.

Here, we used our quantitative knowledge of the PF gene circuit

to predict a priori the timing and mechanisms of its initial adaptation

to several constant environments (squares in Fig 1B) corresponding to

various stress-response imbalance scenarios. We tested these

predictions with experimental evolution, followed by sequencing to

identify the mutations that establish in the population, depending

on the imbalance between the environmental stress and the intracel-

lular response. In this way, we tested how different mutations can

readjust the response of a network module with inherent tradeoff,

to match the stress and minimize the cost in each specific environ-

ment. These results could help us understand how fast and through

what mechanisms drug resistance emerges or deteriorates in the

process of network evolution, and could help the future design of

synthetic gene circuits that resist evolutionary degradation.

Results

The PF gene circuit can mimic various scenarios of stress-
response imbalance

We considered the following disparities between the external stress

and the activity of a stress defense module: (i) the module responds

gratuitously to a harmless environmental change; (ii) the module

cannot respond to harmful stress when needed; and (iii) the module

responds to stress, but suboptimally. To mimic these scenarios

using the PF gene circuit in yeast, we relied on the separability of

stress and response, adjusting two environmental factors with

known fitness effects (Nevozhay et al, 2012): inducer doxycycline

and antibiotic zeocin (Fig 1). Hereafter, DxZy will denote environ-

mental conditions, with x and y indicating doxycycline and zeocin

concentrations, respectively. The antibacterial compound doxycy-

cline has negligible effect on yeast (Wishart et al, 2005), but causes

squelching toxicity in engineered PF cells when bound to rtTA (Gari

et al, 1997; Nevozhay et al, 2012). Zeocin is a broad-spectrum

DNA-damaging antibiotic (Burger, 1998) that acts on bacteria and

eukaryotes.

First, the presence of inducer doxycycline alone corresponds to

scenario (i): costly, futile response of some (Fig 1B, DiZ0) or most

(Fig 1B, D2Z0) cells that start expressing the PF genes. The cost of

response slows the cell division rate of responding, high expressor

cells compared to non-responding, low expressor cells (Nevozhay

et al, 2012). Consequently, the division rate of individual yeast

cells can differ drastically from the overall population growth rate.

To capture these differences between single cell- and population

growth rates, we constructed a population fitness landscape (three-

dimensional gray surface in Fig 1B) and cellular fitness landscapes

(colored panels in Fig 1B). The population fitness landscape maps

the overall population growth against the two environmental vari-

ables, doxycycline and zeocin concentrations. Cellular fitness land-

scapes depict the division rate of single cells versus their gene

expression level in a given combination of doxycycline and zeocin.

As described in the Appendix, we inferred these landscapes

directly from growth rate and gene expression measurements

(Appendix Fig S1A) in 13 different combinations of doxycycline

and zeocin.

Second, the presence of antibiotic zeocin alone (Fig 1B, D0Z2)

corresponds to the lack of response when needed, as in scenario (ii).

Finally, the presence of both inducer and antibiotic (Fig 1B, DiZ2 and

D2Z2) corresponds to scenario (iii) where the fraction of responding,

slower-growing cells ensures cell population survival during antibiotic

treatment, but the response is in general suboptimal.

Altogether, the PF gene circuit is a well-characterized module

lacking direct regulatory interactions with the yeast genome. It

exemplifies typical tradeoffs between the benefits and costs of gene

expression in stress response networks. Importantly, the benefits

and costs are independently tunable for the PF gene circuit,

making it possible to predict and test their evolution toward

optimality.
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Figure 1. The PF synthetic gene circuit: fitness and gene expression characteristics.

A The PF synthetic gene circuit (Nevozhay et al, 2012) consists of two components. First, the regulator reverse tet-trans-activator (rtTA) (Urlinger et al, 2000) is a
reverse-tetR gene fused to three F activator domains (cyan rectangles), which are shorter versions of the VP16 activator (Baron et al, 1997). The target gene
yEGFP∷ZeoR consists of the fluorescent reporter yEGFP fused to the drug resistance gene zeoR (Gatignol et al, 1988) that binds and inactivates zeocin, a bleomycin-
family antibiotic. Unbound zeocin generates DNA double-strand breaks, causing cell cycle arrest and potentially cell death. Doxycycline added to the growth medium
diffuses freely through the cell wall and binds to rtTA dimers. Inducer-bound rtTA undergoes a conformational change that results in strong association with two
tetO2 operator sites upstream of each of the two tetreg promoters (Becskei et al, 2001), activating both regulator and target gene expression, while causing toxicity
by squelching.

B Costs and benefits of PF gene circuit components were determined by measuring cell population growth rate (population fitness) versus two environmental factors:
inducer doxycycline and antibiotic zeocin. Each point on the population fitness landscape (three-dimensional gray surface on the left) is an average of cellular fitness
values (color-shaded slopes in the surrounding plots) as cells stochastically move within gene expression distributions (black histograms in the surrounding plots).
Gene expression is measured as log10(fluorescence) (arbitrary units). DxZy denotes the environment (the x and y following D and Z indicate lg/ml doxycycline and
mg/ml zeocin concentrations, respectively, with Di = 0.2 lg/ml doxycycline). Cellular fitness (cell division rate) is a function of gene expression for each cell in each
environment DxZy. It is inferred from the population fitness, based on a biochemical model (Nevozhay et al, 2012); see the Appendix. The black arrows beneath
cellular fitness landscapes illustrate selection pressures pushing the gene expression distribution toward higher fitness.
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Predicting the first evolutionary steps in constant environments

We asked whether the PF cellular and population fitness land-

scapes (colored squares and panels in Fig 1B; Appendix Fig S1A;

Appendix Table S1) could predict evolutionary trends in specific

environments. For example, in the D2Z0 environment, most cells

are far from their fitness maximum, which is at low expression. If

a mutation could push cells downward in expression, toward their

fitness maximum (horizontal arrow in Fig 1B, D2Z0 panel), then

they should grow faster. Mutations that either abolish or weaken

rtTA toxicity could achieve this effect. Let us call these mutation

types “knockout” (K) and “tweaking” (T) mutations, respectively

(Fig 2A; Appendix Fig S1B). On the other hand, in the D0Z2 envi-

ronment cells should benefit from mutations that diminish the

effect of the antibiotic. This could happen in various ways, for

example by upregulation of native stress-response mechanisms; or

by increasing yEGFP::zeoR expression. Let us call these latter

mutation types “generic” (G) drug resistance mutations (Fig 2A;

Appendix Fig S1B). In all these cases, mutant cells can improve

their fitness by unidirectionally lowering or increasing PF gene

expression. However, in certain conditions (such as DiZ2), when

the cells form two subpopulations that flank the cellular fitness

peak, a single-directional expression change is not optimal. This is

because a one-way expression shift can only move one subpopula-

tion toward the fitness peak, while the other subpopulation must

necessarily move away from it. Instead, optimally the two sub-

populations should approach each other, both moving toward the

fitness peak (horizontal arrows in Fig 1B, DiZ2, D2Z2 panels).

How would the PF cells evolve to adapt in specific combinations

of doxycycline and zeocin? Mutations of any type (K, T, G) can arise

spontaneously, then establish in the population, and compete with

each other depending on two requirements. First, the mutation type

must be available (genetic changes causing the phenotype must

exist). Second, since we consider large populations, the mutation

should be beneficial, improving fitness in the given environment.

Despite these intuitive expectations, it is unclear how many muta-

tions of each type will establish in each condition, and how fast.

To address these questions in silico, we developed two comple-

mentary modeling approaches: a simple mathematical model and a

detailed computational simulation framework (see the Computa-

tional Models.zip file and the Appendix for detailed descriptions).

The two models serve to test the robustness of results to various

modeling approaches. The simple model was more general and

faster, allowing more extensive parameter scans. On the other hand,

the simulation framework allowed testing how specific details of

experimental evolution would affect the evolutionary dynamics, and

provided more detailed results. We initiated both models with a

population of ancestral (wild-type) PF cells, aiming to find out the

number and type of mutations that establish and when the ancestral

genotype disappears. We modeled 20 days of evolution in each

environment indicated by the colored squares in Fig 1B.

The simpler model described population dynamics by a system

of ordinary differential equations (ODEs), assuming constant popu-

lation size and mutation rate. We characterized wild-type and

mutant cells by a single parameter: their fitness (exponential growth

rate), determined from the fitness landscapes in Fig 1B. For exam-

ple, we assumed that K mutants had cellular fitness corresponding

to null expression in Fig 1B. T-type mutant cells altered their fitness

randomly to a level corresponding to intermediate expression on the

cellular fitness landscapes. Finally, G-type mutants increased their

fitness randomly, up to a level they would have without zeocin.

This simpler model could predict how fast the wild-type genotype

disappears from the population. It could also forecast the mutation

type (K, T, G) that predominantly replaces the wild type in each

condition. However, it could not predict the number of distinct

mutant alleles in the evolving population. Moreover, it lacked

potentially important experimental details, such as periodic resus-

pensions and phenotypic switching.

To test the importance of such additional details, the detailed

simulation framework captured multiple experimentally relevant

aspects of evolution. For example, cells could switch between On

and Off states with experimentally inferred rates (Appendix

Table S1). K, T, and G mutations with altered switching and growth

rates entered the population as single cells at a constant, but adjus-

table rate l per cell per generation (Fig 2A; Appendix Fig S1C).

K-type mutants could not switch On, and thus had no cellular fitness

costs in doxycycline. T-type mutants switched On at a randomly

reduced rate, and thus had diminished cellular fitness costs from PF

gene expression. G-type mutant cells had randomly increased drug

resistance without any change in switching rates. We simulated

periodic resuspensions by repeatedly reducing the cell population

size to 106. We considered cells to be initially drug- and inducer-

free, and allowed them to gradually take up zeocin and doxycycline.

This simulation framework could predict the number of distinct

mutant alleles, in addition to the characteristics predicted by the

simpler model.

Both models had three free parameters: the rate of potentially

beneficial mutations l, and the input probabilities P(G) and P(T) of

a given mutation being of type G or T, respectively. Once known,

these parameters also define the probability of a mutation to be of

type K: P(K) = 1 – P(G) – P(T). We note the difference between the

rate and probability of a mutation: for example, the probability of

P(K) could be equal to 1, while its rate lP(K) is much < 1 per

genome per generation. Figure 2A depicts the effect of each muta-

tion type, illustrating the relationships among the free parameters.

We extracted the rest of the parameters (Appendix Table S1) from

experimental measurements (see the Appendix) and kept them

fixed.

Using these models, we studied how the three free parameters

affected three features of evolutionary dynamics: the ancestral geno-

type’s half-life, as well as the type and number of mutant alleles in

each condition (Fig 2; Appendix Figs S2 and S3). We started by

studying the ancestral genotype’s half-life in each model, scanning

each free parameter systematically (Fig 2B; Appendix Figs S2B and

S3B). The models consistently indicated (Fig 2B) that the ancestral

genotype disappeared fastest in conditions with steep monotone

cellular fitness landscapes (Fig 1B, D0Z2 and D2Z0). In contrast,

the ancestral genotype remained in the population longer in peaked

cellular fitness landscapes (Fig 1B, D2Z2 and DiZ2). Finally, the

majority of cells were still genetically ancestral after 20 days in

DiZ0, which has the most gradual cellular fitness landscape (Fig 1B,

DiZ0). The time when the ancestral genotype disappeared in

various environments depended differently on the mutation proba-

bilities P(K), P(T), P(G) (Appendix Fig S3B). For example, the

ancestral genotype disappeared later in D2Z2 when we lowered P

(T). Likewise, lowering P(G) prolonged the ancestral genotype’s
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presence in the populations in D0Z2. These observations confirmed

the expectation that the most beneficial mutation in each condition

dictates evolutionary dynamics. Overall, we hypothesized based on

these results that the ancestral PF gene circuit should disappear

fastest in D2Z0 and D0Z2, followed by DiZ2 and D2Z2, and finally

in DiZ0. Making these predictions required quantitatively under-

standing the fitness properties and genetic structure of the PF gene

circuit. Without modeling, it would have been impossible to obtain

quantitative estimates of the speeds at which mutants establish and

take over the evolving population.

In general, K, T, and G allele frequencies at the end of simulated

time courses did not match the input probabilities of P(K), P(T),

and P(G) mutations. Rather, each condition favored different muta-

tion types as long as they were available (Fig 2D; Appendix Figs S2

and S3). For example, in D2Z0, nearly all mutations were K-type

even if K mutations were unlikely to enter the population. T
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Figure 2. Simulation framework predicts evolutionary dynamics.

A Simulating the initial steps of evolution. Three types of potentially beneficial mutations (with an overall rate l) enter the ancestral population of yeast cells that
initially carry the intact PF gene circuit. Each cell can divide and mutate, producing new genotypes with altered fitness that can belong to three different types. The
first two types are knockout (K) and tweaking (T) mutations. They eliminate rtTA’s regulator activity and toxicity completely or partially, respectively. The third type
includes extra-rtTA or generic (G) mutations that cause zeocin resistance independently of rtTA. In the models, we consider exponential growth with random
elimination of cells or periodic resuspensions to control population size. Empty circles represent intact PF cells, while blue, magenta, and orange circles represent K, T,
and G mutants, respectively. These mutations can arise, be lost, or expand in the population.

B The speed at which mutants take over the population in each simulated condition is measured as the ancestral genotype’s half-life (the time until only 50% of the
population carries the ancestral genome). N = 100; mean � SEM in each simulated condition: D2Z0, DiZ0, D0Z2, D2Z2, and DiZ2. In these plots, we fixed
l�Z = 10�6.2 or l+Z = 10�5.4/genome/generation (for no zeocin and zeocin, respectively) and P(G) = 0.75. Therefore, P(T) = 0.25 � P(K). On the horizontal axis, we
show the probability of T mutations among intra-rtTA mutations: P*(T) = P(T|¬G), which scales P(T) four-fold up such that its maximum is 1 instead of 0.25. The gray
bar denotes the value used for time course simulations in subsequent figures. The parameter set for the gray bar on this and the following panels is P(T) = 0.025;
P(K) = 0.225; and P(G) = 0.75.

C Number of established mutations with frequency > 5% at day 20. N = 100; mean � SEM in each simulated condition: D2Z0, DiZ0, D0Z2, D2Z2, and DiZ2. Parameters,
axes, and gray bar: as in (B).

D Population fractions of T-, K-, and G-type mutations at day 20, for the parameters corresponding to the gray bar, as indicated above.
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mutations established exclusively in D2Z2, while in DiZ2 they

appeared alongside G mutations. In DiZ0, K or T mutations estab-

lished late and spread slowly, with parameter-dependent relative

fractions. Finally, only G alleles could establish in D0Z2. To

conclude, both models predicted the environment-specific domi-

nance of various mutation types at 20 days, irrespective of the

relative supplies of different mutation types. The most likely cause

is each condition selecting one mutation type so strongly that the

final outcome of evolution (but not its dynamics) becomes quasi-

deterministic. The long-term dominance of specific mutants in each

condition might have been intuitively inferable from the fitness

properties and genetic structure of the PF gene circuit. However,

modeling is indispensable to understand the evolutionary dynamics

of mutants arising, establishing and competing before reaching the

final state.

Finally, we used the simulation framework to determine the

number of alleles over 20 days in each condition (Fig 2C). This is

perhaps the least intuitive result that could not have been predicted

without computation. The simulations indicated that the number of

alleles exceeding a certain frequency depended strongly (sometimes

non-monotonically) on the overall mutation rate as well as the

availability of individual mutations (Appendix Fig S3A). The depen-

dence of allele numbers on simulation parameters should allow

parameter estimation once experimental allele data are available.

In summary, based on mathematical and computational models,

we hypothesized that the ancestral PF gene circuit should disappear

from the population fastest in conditions D2Z0 and D0Z2, followed

by D2Z2 and DiZ2, and lastly DiZ0. In addition, we conjectured that

K, T, and G mutations should predominate in D2Z0, D2Z2, and

D0Z2, respectively, whereas mixtures of T and G genotypes should

prevail in DiZ2. Mutations (K or sometimes T) should be slow to

establish in DiZ0, causing the ancestral genotype to remain in the

majority even at 20 days. To test these hypotheses, we evolved

three replicate PF yeast cell populations in five conditions (DiZ0,

D2Z0, D0Z2, DiZ2, D2Z2) corresponding to the colored squares on

the population fitness landscape in Fig 1B. We also evolved cells in

the control condition D0Z0, where we found only one barely detect-

able, low-frequency synonymous substitution (Appendix Table S2).

We observed directly the relationship between gene expression

and fitness by daily fluorescence and cell count measurements over

the course of these experiments. For various experiments and on

multiple days, we collected samples for whole-genome and tradi-

tional (Sanger) sequencing to reveal the mutations underlying the

observed gene expression changes.

Scenario (i): reproducible circuit failure from gratuitous
circuit response

To test the fate of a new stress defense module that becomes costly

by gratuitously responding to an otherwise harmless environmental

change, we grew PF yeast cells in inducer doxycycline without

antibiotic (D2Z0), resuspending every 12 h. In this condition, fluo-

rescence first rose and then began to decline toward the basal level

in < 1 week (~40 generations) for all three replicate populations

(Fig 3A). The fluorescence decline continued until gene expression

was indistinguishable from that of uninduced cells by the end of the

experiment, consistent with the effect of K-type mutations. As fluo-

rescence levels dropped, population growth rate increased signifi-

cantly (see the Source Data for Fig 3A), indicating that the initial

cost of futile response disappeared. These concurrent fluorescence

and fitness changes agreed with the leftward hill climb on the

blue landscape in Fig 1B (black arrow underneath D2Z0) expected

for K-type mutations.

To uncover the genetic mechanism(s) underlying these fluores-

cence and fitness changes, we combined whole-genome and Sanger

sequencing (see the Appendix). Our analysis revealed four compet-

ing mutations inside the rtTA coding sequence that jointly

accounted for most of replicate population #1 already at Day 9

(Fig 3C and D “12 h-1”; Appendix Table S3), and eliminated the

ancestral genotype by the end of the experiment. The same

happened in the other two replicate experiments as well (Fig 3C–E

“12 h-2,3”; Appendix Table S3). This is consistent with computa-

tionally predicted K-type mutations eliminating rtTA toxicity, along

with its transcription-activating function. We detected no mutations

in other parts of the genome, although we cannot rule out the possi-

bility of mutations in repeat regions or large duplications/deletions

that are notoriously difficult to detect by whole-genome sequencing

(Appendix Fig S4D and E). We repeated the evolution experiment

with 24-h resuspensions and observed similar fluorescence and

fitness changes, along with rtTA coding sequence mutations, except

that they occurred faster (Fig 3C “24 h-1,2,3”; Appendix Fig S4A–C,

Appendix Table S3). Four of these mutations (three STOP codons

▸Figure 3. Evolutionary dynamics of PF cells in D2Z0 and DiZ0, corresponding to scenario (i): futile response to harmless signal.

A Time-dependent changes in the fluorescence distributions (blue heatmaps), average fluorescence (blue circles), and average, mixed population fitness (blue
squares). Data were collected as PF cells evolved in condition D2Z0 (2 lg/ml doxycycline and no zeocin) in three replicate experiments. Average fluorescence and
fitness values in control condition D0Z0 are also shown as black crosses for reference. Both the fluorescence (P = 0.00019) and fitness (P = 0.003959) were
significantly different in populations evolving in D2Z0 compared at Days 4 and 21 (t-test, see the Materials and Methods).

B The same measurements as in (A), but for PF cells evolving in condition DiZ0 (0.2 lg/ml doxycycline and no zeocin, cyan heatmaps) in three replicate experiments.
The fluorescence (P = 0.0144526) was significantly different, but the fitness (P = 0.2459) was not in populations evolving in DiZ0 when compared at days 4 and 21.
Pairwise comparisons with the same days in D0Z0 showed no significant fitness differences (see the source data).

C Intra-rtTA mutations observed in conditions D2Z0 (blue lines) and DiZ0 (light blue lines) mapped along the rtTA activator within the PF gene circuit sequence. The
five lines of annotation indicate the following: (i) basepair coordinates relative to the rtTA translation start site (+1); (ii) nucleotide substitution; (iii) amino acid
substitution; (iv) in which experiment the allele was found; and (v) allele fractions at Day 19 inferred from sequencing. If there was a deletion or duplication, the
first two lines represent its range. *: STOP codon; D: deletion; Dupl: duplication. No extra-rtTA mutations were identified in these conditions. Clones selected for
phenotyping are underlined and numbered in blue.

D, E Time-dependent allele frequencies for mutations observed in conditions D2Z0 (D), and DiZ0 (E), replicate experiment #1. The way we used sequencing data to
draw allele frequencies and the lines connecting them is explained in the Mutation time course reconstruction section of the Materials and Methods.

F, G Time-dependent allele frequencies from simulations using mutation parameter values reflecting experimental conditions.

Source data are available online for this figure.
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and a 78-base pair deletion) truncated and eliminated all three acti-

vator domains of rtTA, further supporting the K-type loss of rtTA

function.

Decreasing the inducer (doxycycline) concentration from 2 to

0.2 lg/ml should diminish rtTA toxicity. Selection in this condition

should be weaker (Fig 1B), lowering the chances of beneficial

mutations establishing in DiZ0 compared to D2Z0. To test these

predictions, we evolved three cultures in the DiZ0 condition

(Fig 3B). In agreement with computational predictions (Fig 2A and

B; Appendix Figs S2 and S3), the fraction of On cells started declin-

ing slowly only toward the end of the experiment. This resulted in a

statistically significant change in fluorescence, but not in fitness.

Moreover, Sanger sequencing at the end of the experiment revealed

a single intra-circuit deletion at 58% frequency (Fig 3C), which

eliminated one of the two tetO2 operator sites upstream of rtTA.

This suggests a T-type mutation (since one tetO2 site remained

intact) targeting a regulatory region rather than protein-coding

sequence. We detected no mutations elsewhere in the genome.

In summary, these experimental observations confirmed the

computational predictions that a steep, monotonically decreasing

cellular fitness landscape (Fig 1B, D2Z0, blue shading; Fig 3F and G)

reproducibly selects for lower gene expression. The effect of these

mutations is to decrease gene expression unidirectionally by either

eliminating or reducing the fraction of On cells. Thus, deleterious

network activation favors mutations that prevent or reduce switch-

ing into the slow-growing On state. We selected five individual

genotypes (underlined with blue in Fig 3C) for testing whether their

gene expression and fitness are consistent with K-type mutations

(see below the section on phenotyping).

Scenario (ii): gaining gene expression for an initially
unresponsive gene circuit

To test what happens if a stress defense module cannot induce

when needed during harmful stress, we grew cell populations in

2 mg/ml zeocin (D0Z2). The lack of inducer in this condition

forced all cells to be in the drug-sensitive Off state. Consequently,

the tradeoff between elevated expression and drug resistance

specific to the PF gene circuit was absent in D0Z2. Early in the

course of evolution, we observed a substantial, statistically signifi-

cant drop in population fitness compared to untreated cells

(Fig 4A), indicating the gene circuit’s inability to respond to

stress. Yet, some cells must have had enough drug resistance to

survive, because the growth rates of cultures started to recover

after � 4 days (Fig 4A). At the same time, yEGFP∷ZeoR expres-

sion increased significantly compared to control cultures main-

tained in D0Z0 (Fig 4A). This difference remained statistically

significant even after correction for multiple comparisons, particu-

larly toward the end of the experiment. We observed similar

trends with 24-h resuspensions (Appendix Fig S5). Thus, the

evolving cell population moved repeatedly upward in gene

expression and drug resistance space, toward the cellular fitness

maximum in Fig 1B (black arrow underneath D0Z2). In contrast,

cells lacking the zeoR gene never recovered in the same level of

zeocin, while cells with higher basal yEGFP::zeoR expression

recovered faster (Appendix Fig S5C–E).

Next, we sought mutations explaining the observed fluorescence

and fitness changes. In sharp contrast with D2Z0, we found no

mutations in either rtTA or its regulatory region. Instead, we

detected two extra-rtTA, but intra-circuit mutations overall in six

replicate experiments (Fig 4D; Appendix Table S4), one of which

eliminated a tetO2 operator site upstream from yEGFP::zeoR, while

the other was a synonymous substitution in an arginine codon

within the zeoR coding region. Additionally, sequencing revealed

multiple extra-circuit mutations (Fig 4B) and linkage between the

intra-circuit tetO2 deletion and some extra-circuit alleles (Fig 4B and

D). This raised the possibility that intra- and extra-circuit mutations

jointly detoxify the cells in a manner consistent with G-type muta-

tions. The real number of extra-circuit mutations could be higher,

considering the difficulty of detecting certain mutation types by

high-throughput sequencing. In addition, some adaptation in D0Z2

could also have occurred through native stress responses or non-

genetic selection of the high-expressing tail of the basal yEGFP::

ZeoR distribution.

Altogether, these data suggest that as long as cells with a

potentially beneficial, but inoperative module have some basal

resistance to survive, they can later activate the module and

acquire drug resistance by genetic mutations (Charlebois et al,

2011). Apparently, this happens through mutations both inside

and outside of the module, genetically integrating it with the

host. This effect seems dependent on the presence of zeoR, since

cells lacking this gene do not survive in D0Z2 (Appendix Fig

S5C and D). An interesting question is whether drug resistance

gained from these mutations involves some cost. To answer this

question and test whether the mutants are indeed G-type, we

selected and characterized six individual genotypes underlined

with red in Fig 4D (see the section on phenotyping below).

Scenario (iii): optimization of gene expression under opposing
evolutionary pressures

To test what happens when a module responds to stress non-

optimally, we exposed the cells to both inducer and antibiotic. In

these conditions, there is a cellular fitness peak at intermediate gene

expression (Fig 1B, DiZ2 and D2Z2, green and magenta shading), in

contrast to the monotone cellular fitness landscapes in conditions

with only inducer (D2Z0 and DiZ0) or only antibiotic (D0Z2). The

cellular fitness peak indicates opposing selection pressures from

zeocin toxicity and the fitness cost of rtTA expression: zeocin selects

for increased gene expression, while rtTA toxicity selects for dimin-

ished rtTA function and thus decreased gene expression (Fig 1B,

arrows underneath DiZ2 and D2Z2). These selection pressures act

on two cell subpopulations flanking a cellular fitness peak (Fig 1B,

D2Z2). Therefore, fitness improvement in DiZ2 and D2Z2 requires

adaptation toward an intermediate “sweet spot” of expression. K

mutations cannot achieve this since they completely disrupt rtTA

function.

In D2Z2, average fluorescence decreased while fitness increased

significantly for all replicate cultures (Fig 5A), albeit by a lesser

extent and more slowly than in D2Z0 (Fig 3A), as predicted compu-

tationally. Sequencing has uncovered only two competing alleles

from one replicate culture, each affecting a distinct PF gene circuit

component. Sequencing samples from the other two replicate

experiments then revealed D2Z2-specific mutations that repeatedly

occurred in the same rtTA loci: the 50 untranslated rtTA region and

the 225th basepair of rtTA (Fig 5C; Appendix Fig S6A and B;
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Figure 4. Evolutionary dynamics of PF cells in D0Z2, corresponding to scenario (ii): lack of response when needed.

A Time-dependent changes in the fluorescence distributions (red heatmaps), average fluorescence (red circles), and average, mixed population fitness (red squares) as
PF cells evolve in condition D0Z2 (no doxycycline and 2 mg/ml zeocin) in three replicate experiments. Black crosses, as in Fig 3. Both the fluorescence (P = 0.014323)
and fitness (P = 0.002244) were significantly different in populations evolving in D0Z2 when compared at days 4 and 21 (dependent samples t-test, see the Materials
and Methods). In addition, at many time points, the fluorescence difference from the ancestral PF was statistically significant (independent samples t-test, see the
Materials and Methods). These statistical differences persisted even after correcting for multiple comparisons. The same was true for fitness at early time points (up
to Day 6).

B Time-dependent allele frequencies for mutations observed in condition D0Z2, replicate #1. Top: whole-genome sequencing from a 12-h resuspension experiment.
Bottom: whole-genome sequencing combined with Sanger sequencing of clonal isolates from the same 24 h resuspension experiment, indicating linkage between
intra- and extra-PF mutations. Among the observed mutations, INO2 is a regulator of phospholipid biosynthesis that lowers stress resistance, and YHR127W function
is unknown, but is synthetic lethal with ARP1, which mediates resistance to multiple stresses. Red bars and numbers indicate clones selected for phenotyping. The
way we used sequencing data to draw allele frequencies and the lines connecting is explained in the Mutation time course reconstruction section of the Materials
and Methods.

C Time-dependent allele frequencies from simulations using mutation parameter values reflecting experimental observations.
D Extra-rtTA, but intra-circuit mutations observed in condition D0Z2 (red lines) mapped along yEGFP::zeoR within the PF gene circuit sequence. The five lines of

annotation indicate the following: (i) basepair coordinates relative to the yEGFP::zeoR translation start site (+1); (ii) nucleotide substitution; (iii) amino acid
substitution; (iv) which experiment the allele was found; and (v) allele fractions at Day 19 inferred from sequencing. If there was a deletion, the first two lines
represent its range. D, deletion; Syn, synonymous. Two extra-rtTA, but intra-circuit mutations were identified in this condition. Clones selected for phenotyping are
underlined and numbered in red.

Source data are available online for this figure.
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Appendix Table S5). Another mutation truncated rtTA by a STOP

codon in the last activator domain but left the two other domains

intact, suggesting a T mutation with diminished rtTA function and

toxicity, while still maintaining a zeocin-resistant, yEGFP∷ZeoR-

expressing subpopulation.

Next, we studied how lower but nonzero rtTA toxicity affects

evolutionary dynamics for a peaked fitness landscape, propagating

PF cells in 0.2 lg/ml doxycycline and 2 mg/ml zeocin (Fig 1B,

DiZ2). The addition of zeocin selects against low-expressing Off

cells, reshaping the bimodal distribution seen in DiZ0, so that the

fraction of On cells increases in DiZ2 (compare black histograms

overlaid with cyan and green shading, DiZ0 and DiZ2 in Fig 1B).

These high expressors thus survive in stress and can maintain the

population until more potent drug resistance mutations arise

(Charlebois et al, 2011). Indeed, fitness decreased only slightly

during evolution in DiZ2 (Fig 5B). After Day 7, fluorescence seemed

to decrease slowly while fitness crept up throughout the time

course. These changes were not statistically significant when we

compared fitness and fluorescence values at Day 4 and Day 21 along

the DiZ2 time course. However, we found that the fitness in DiZ2

was significantly lower than in D0Z0 at several time points, which

remained true even after correcting for multiple comparisons.

DiZ2 was the only condition where mutations affecting both rtTA

and extra-circuit loci established (Fig 5E). The intra-circuit mutation

was a tetO2 site deletion from the rtTA promoter, eliminating the

other tetO2 site compared to the deletion in DiZ0. Additionally, we

detected three extra-rtTA mutations, one of them linked to the tetO2

deletion. In general, these findings indicated that peaked fitness

landscapes selected for T-type mutations, while also allowing

for G-type mutations, as predicted computationally (Figs 2D

and 5F and D). We confirmed these mutation types by testing

whether the mutations weakened rtTA activity, without eliminating

it (see below).

Phenotyping reveals fitness-improving network characteristics

In contrast to the D0Z0 control condition where fitness and gene

expression changes were statistically non-significant (Appendix Fig

S6D and E), these quantities changed significantly in other condi-

tions tested (Figs 3, 4 and 5). These changes generally involved

mixed populations composed of different genotypes competing with

each other. To characterize individual genotypes in isolation, we

measured gene expression levels and population fitness of clonal

isolates from the last day of the evolution experiments.

First, we studied five clonal isolates from the last day of the

D2Z0 time course (underlined in blue in Fig 3C), to test whether

they carry K-type mutations. If this is true, then they should be

uninducible and their fitness should not depend on doxycycline.

Therefore, we quantitatively characterized the effect of doxycycline

on the fluorescence and fitness of these clones. Thus, we defined

the fitness effect of doxycycline as log10[(fitness with doxycycline)/

(fitness without doxycycline)]. Likewise, we defined the effect of

doxycycline on fluorescence as log10[(fluorescence with doxy-

cycline)/(fluorescence without doxycycline)]. Based on these

measures, we found that all five clones isolated from the D2Z0

inducer-only condition were fitter (Fig 6A, top panel) than the PF

ancestor and were uninducible (Fig 6A, middle panel). These

properties matched the characteristics of K-type mutations predicted

computationally to dominate in D2Z0 (Fig 6A). Sanger sequencing

of clonal isolates from the middle and the end of the D2Z0 evolution

time course indicated that each K-type mutation occurred individu-

ally, without linkage to other mutations. Some of these clones were

also fitter in D0Z0 compared to the ancestral strain, suggesting

additional adaptation to growth in minimal medium (Lenski &

Travisano, 1994; New et al, 2014) after eliminating the rtTA toxicity.

Next, we studied clonal isolates from the last day of the D0Z2

time course (Fig 4B and D) to test whether they are zeocin-resistant.

We quantitatively characterized the effect of zeocin on the fitness of

these clones as log10[(fitness with zeocin)/(fitness without zeocin)].

To determine whether zeocin resistance arose from higher yEGFP::

zeoR expression, we also defined the gene expression increase in

these clones as log10[(fluorescence of evolved clone in D0Z0)/(fluo-

rescence of PF ancestor in D0Z0)]. We found that all clones isolated

from the zeocin-only condition (underlined in red in Fig 4B and D)

had higher fitness in zeocin (D0Z2) compared to ancestral PF cells

(Fig 6B, top panel). The cause of zeocin resistance was higher

yEGFP::zeoR gene expression even in the condition D0Z0, without

zeocin (Fig 6B, middle panel and Fig 6E). These observations are

consistent with G-type mutations, predicted computationally to

dominate in D0Z2. yEGFP::zeoR gene expression in all clones shifted

significantly upward, obeying the selection pressure (Fig 1B, black

arrow underneath D0Z2). Some clones had two linked mutations,

one of which was within the PF gene circuit, while the other was

outside of it. We found no mutations for one zeocin-resistant clone

Figure 5. Evolutionary dynamics of PF cells in D2Z2 and DiZ2, corresponding to scenario (iii): suboptimal response.

A Time-dependent fluorescence distributions (magenta heatmaps), average fluorescence (magenta circles), and mixed population fitness (magenta squares) as PF
cells evolve in condition D2Z2 in three replicate experiments. Black crosses, same as in Fig 3. Both the fluorescence (P = 0.0003157) and fitness (P = 0.010568) were
significantly different in populations evolving in D2Z2 when compared at days 4 and 21. Statistical test: as above.

B The same measurements as in panel (A), but for PF cells evolving in condition DiZ2 in three replicate experiments. Neither fluorescence (P = 0.95), nor fitness
(P = 0.087) was significantly different in populations evolving in DiZ2 when compared at days 4 and 21. Pairwise comparisons with the same days in D0Z0 showed
significant fitness differences, many of which remained true even after correction for multiple comparisons.

C Intra-circuit mutations observed in conditions D2Z2 (magenta lines) and DiZ2 (green lines) mapped along the rtTA activator within the PF gene circuit sequence.
The five lines of annotation indicate: (i) basepair coordinates relative to the rtTA translation start site (+1); (ii) nucleotide substitution; (iii) amino acid substitution;
(iv) which experiment the allele was found; and (v) allele fractions at Day 19 inferred from sequencing. If there was a deletion, the first two lines represent its
range. *, STOP codon; D, deletion. While no extra-rtTA mutations were identified in condition D2Z2, a few were found in DiZ2 (see E). Clones selected for
phenotyping are underlined and numbered.

D, E Time-dependent allele frequencies for mutations observed in conditions D2Z2 (D) and DiZ2 (E), replicate #1. The way we used sequencing data to draw allele
frequencies and the lines connecting is explained in the Mutation time course reconstruction section of the Materials and Methods.

F, G Time-dependent allele frequencies from simulations using mutation parameter values reflecting experimental conditions.

Source data are available online for this figure.
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in any locus tested by Sanger sequencing, suggesting extra-circuit

mutation(s) undetectable by either whole-genome or targeted

Sanger sequencing. These results indicate that adaptation in D0Z2

recurrently involves mutations causing PF gene expression increase.

This is surprising considering that mutations could have just upreg-

ulated native stress resistance pathways without involving the PF

gene circuit.

Considering the original tradeoff between the cost of gene expres-

sion and benefit of drug resistance in the PF gene circuit, we asked

whether a similar tradeoff may apply to drug-resistant genotypes

evolved in D0Z2. Interestingly, adaptation by elevated basal yEGFP::

zeoR expression tended to cause a fitness cost in D0Z0, when zeocin

was absent (Fig 6B, bottom panel). The sources of these new fitness

costs are unclear, but they are not rtTA-related because doxycycline

was absent. This suggests that a novel tradeoff appeared between

evolved stress resistance and growth in the absence of stress

(Fig 6G). This new tradeoff is reminiscent of the original tradeoff in

the ancestral PF gene circuit, where higher expression was also

costly, but protective in the presence of antibiotic.

We similarly characterized the effects of doxycycline and zeocin

on the fitness and gene expression of two clones isolated from D2Z2

experiments (underlined in magenta, Fig 5C). We found that both

clones isolated from D2Z2 had reduced inducer sensitivities

(Fig 6C), requiring higher doxycycline than the PF ancestor to reach

a given gene expression level (Fig 6C, middle panel). Generally, the

gene expression distributions of these clones were enriched in Off

cells (Appendix Fig S7C and D). These changes were associated with

lower doxycycline toxicity (Fig 6C, top panel, blue bars), while the

cells still maintained drug resistance in doxycycline (Fig 6C, bottom

panel, magenta bars). These characteristics were consistent with

T-type mutations, as predicted computationally to dominate for

peaked cellular fitness landscapes. Interestingly, in addition to the

increase in Off cells, the On state moved to lower expression, toward

the cellular fitness peak in the gene expression space (Appendix Fig

S7C and D). We could still fully induce these clones by applying

excessive (6 lg/ml) doxycycline levels with zeocin (Appendix Fig

S7C and D). Interestingly, all cells were in the On state (fully

induced) throughout the 20 days of evolution in D2Z2, but clones

placed in D2Z2 were not. Taken together, these observations suggest

that gene circuit bistability may have trapped mutant cells in the On

state during evolution if the mutation arose in cells that were On.

Finally, we studied the single clone isolated from the DiZ2 exper-

iments (tetO2 deletion; underlined in green, Fig 5C). These cells

required only slightly higher doxycycline levels for induction than

the PF ancestor. Yet, once induced, they rose to higher mean expres-

sion level than the ancestor (Fig 6D; Appendix Fig S7A). Moreover,

the two peaks in the bimodal gene expression histograms

approached each other for this clone (Fig 6F; Appendix Fig S7A),

both shifting toward the cellular fitness peak in Fig 1B, DiZ2 as

dictated by selection. This is a unique example of noisy gene expres-

sion evolving under opposing selection pressures (Fig 1B, black

arrows underneath DiZ2). Essentially, although evolution altered

the gene expression, its distribution still remained bimodal, with a

similar mean. While this mutation apparently alters rtTA function, it

is different from the T-type mutations assumed in computational

models (which did not account for shifting of peaks). This unique

type of adaptation has no equivalent in phenotypically homo-

geneous populations with unimodal gene expression distributions.

To measure the phenotypic effects of the observed mutations in

isolation from potential changes in the genetic background, we recon-

structed the mutations rtTA+225G?C (D2Z2 clone #1) and rtTA�9G?C

(D2Z2 clone #2) in the ancestral PF background (Appendix Fig S7C

and D). The rtTA+225G?C mutation was slightly inducible in the

ancestral background, with a small high-expressing subpopulation at

2 lg/ml doxycycline. Moreover, we could reinduce this clone to

nearly full expression using excessive doxycycline concentrations

(6 lg/ml) in the presence of zeocin, suggesting that the reconstructed

mutation rtTA+225G?C lowered the dynamic range and sensitivity

similar to the clonal isolate. Interestingly, however, the reconstructed

rtTA�9G?C mutation failed to induce even with excessive doxycyline

concentrations, suggesting linkage and potential epistasis with some

undetectable genetic extra-circuit mutation(s).

Overall, phenotyping validated the prevalence of K, T, G muta-

tion types in different environments, as predicted computationally.

Our observations also underscore the potential importance of noise-

reshaping T-type mutations in artificial and natural evolution.

▸Figure 6. Gene expression and fitness characteristics of clonal isolates from various evolved populations.

A Phenotype of clones evolved in inducer doxycycline alone (D2Z0, “futile response”). The first bar (“Anc.”) corresponds to the ancestral PF cells, and the other bars
correspond to clonal isolates from the last time point of the D2Z0 experiment. Top panel: log10-ratio of fitness with doxycycline (D2Z0) relative to no doxycycline
(D0Z0). Middle panel: log10-ratio of average fluorescence intensity with doxycycline (D2Z0) relative to no doxycycline (D0Z0). Bottom panel: log10-ratio of average
population fitness of each evolved clone relative to the ancestor in no doxycycline (D0Z0). Error bars represent standard deviations around the mean. Stars denote
significance at P < 0.05 (two-sided t-test).

B Phenotype of clones evolved in antibiotic zeocin alone (D0Z2, “lack of response when needed”). The first bar (“Anc.”) corresponds to the ancestral PF cells, and the
other bars correspond to mutants. Top panel: log10-ratio of fitness with zeocin (D0Z2) relative to no zeocin (D0Z0). Middle panel: log10-ratio of average fluorescence
intensity of each evolved clone relative to the ancestor in no zeocin (D0Z0). Bottom panel: log10-ratio of average population fitness of each evolved clone relative to
the ancestor in no zeocin (D0Z0). Error bars and stars as in (A).

C Phenotypes of two clones evolved in doxycycline and antibiotic zeocin (D2Z2, “suboptimal response”). The bars marked “A.” correspond to the ancestral PF cells, and
the other bars correspond to mutants. Top panel: log10-ratio of fitness with doxycycline (D2Zy) relative to no doxycycline (D0Zy) either with or without zeocin (y = 0
or y = 2). Middle panel: log10-ratio of average fluorescence intensity with doxycycline (D2Zy) relative to no doxycycline (D0Zy). Bottom panel: log10-ratio of fitness
with zeocin (DxZ2) relative to no zeocin (DxZ0), either with or without doxycycline (x = 0 or x = 2). Error bars and stars as in (A).

D Phenotype of the single clone isolated from intermediate doxycycline and antibiotic zeocin (DiZ2, “suboptimal response”). The bars marked “A.” correspond to the
ancestral PF cells, and the other bars correspond to the mutant clone. Top panel: log10-ratio of fitness with doxycycline (D2Zy) relative to no doxycycline (D0Zy) either
with or without zeocin (y = 0 or y = 2). Middle panel: log10-ratio of average fluorescence intensity with doxycycline (D2Zy) relative to no doxycycline (D0Zy). Bottom
panel: log10-ratio of fitness with zeocin (DxZ2) relative to no zeocin (DxZ0), either with or without doxycycline (x = 0 or x = 2). Error bars and stars as in (A).

E Gene expression histograms measured in D0Z0 for Clones #4 and #7 (evolved in D0Z2) compared to the PF ancestor (shaded histogram).
F Gene expression histograms measured in DiZ2 for Clone #1 (evolved in DiZ2) compared to the PF ancestor (shaded histogram).
G Tradeoff between yEGFP::zeoR expression and zeocin resistance for clones evolved in D0Z2 (red) and DiZ2 (green).
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Additional insights into PF evolutionary dynamics

Experimental evolution and phenotyping validated the major muta-

tion types predicted computationally for each condition. Therefore,

we asked whether the computational framework could provide any

additional insights into evolutionary forces and mechanisms based

on the experimental data.

First, we tried to estimate the rate l of potentially beneficial

mutations using its predicted effect on various allele numbers in

several conditions. Interestingly, we could not capture the experi-

mental number of alleles and the half-life of ancestral genotype

when we applied the same mutation rate in all conditions. Instead,

comparing the results of computational simulations (Fig 4C;

Appendix Fig S2D and F) with experimental data suggested slightly

higher mutation rate in zeocin than without it (Fig 2). Specifically,

the rate of potentially beneficial mutations that matched the data

best was l�Z = 10�6.2 with zeocin compared to l+Z = 10�5.4/

genome/generation without zeocin. This increase is reasonable

because zeocin is a DNA-damaging agent that may elevate mutation

rates. These beneficial mutation rates are comparable with a recent

estimate in yeast of ~10�6/genome/generation (Levy et al, 2015).

Second, we asked whether we could extract any information

about the mutation probabilities P(K), P(T), and P(G). We compared

simulation results with experimental data in D2Z0 and D2Z2

conditions where K- and T-type mutations should be prevalent,

respectively. Selection for various mutation types is environment-

dependent, implying that the number and type of established

mutations must depend on the K/T bias in mutations entering the

population. For example, while mainly T-type mutations can

establish and the K-type is deleterious in D2Z2 (since it forces cells

into the drug-sensitive Off state), the opposite is true in D2Z0.

Comparing experimentally observed allele numbers with simulation

results indicated that incoming T mutations should be in the

minority (gray bars, Fig 2B and C) compared to the ~10 times more

available K-type mutations. This suggests that only a few, specific

rtTA loci can harbor T-type mutations, explaining recurrence of

certain mutations in D2Z2. These recurrent mutations must have the

rare capability of tweaking protein function and toxicity while still

maintaining drug resistance, as predicted computationally and vali-

dated experimentally (Fig 6).

Finally, we asked how mutations that arose prior to setting the

environmental conditions may have contributed to the outcome of

evolution experiments. This was important because the PF cells

grew for 24 h in D0Z0 before initiating our evolution experiments.

To address this question, we used a variant of the simulation

framework that allowed neutral mutations to accumulate for 24 h

of growth at the mutation rate l�Z = 10�6.2/genome/generation.

Afterward, we changed the simulated condition to DiZ0, D2Z0,

DiZ2, D2Z2, or D0Z2 using values of the free parameters

estimated from experimental data. We then computed the contri-

bution of these “preexisting” mutations to the final allele frequen-

cies (Appendix Fig S8). The results indicated that preexisting

mutations do not comprise a large fraction of mutant alleles in

conditions DiZ0, D2Z2, and DiZ2. On the other hand, in steep

monotonic cellular fitness landscapes (D2Z0 and D0Z2), preexist-

ing alleles could comprise approximately 35% of mutant alleles in

D2Z0 and ~50% in D0Z2. Nevertheless, the same mutation types

dominated in specific conditions with or without pre-existing

mutations. Likewise, the pre-existing mutations did not substan-

tially alter the ancestral genotype’s half-life in any condition

(Appendix Fig S8).

Discussion

Stress response networks play key roles in the emergence of drug

resistance, from pathogenic microbes to cancer. Typically, stress

response incorporates a tradeoff: cells that activate it grow slower in

the absence of stress. Therefore, optimality of these networks

depends on maintaining the balance between environmental stress

and internal response. Yet, it is unknown how quickly, how repro-

ducibly, and through what types of mutations stress response

networks evolve to balance the costs and benefits of their response

to external stress. What aspects of network evolution are predictable

a priori and what is required for making predictions is unclear. To

address these questions, we studied evolving yeast cells endowed

with a synthetic stress response gene circuit that allowed for sepa-

rate control of the stress and the response by adjusting antibiotic

and inducer concentrations, respectively.

Using quantitative knowledge of the PF gene circuit, we devel-

oped two computational models to predict specific aspects of evolu-

tionary dynamics in six different environmental conditions. The

predicted aspects included the speed at which the ancestral geno-

type disappears from the population, as well as the types and

numbers of mutant alleles that establish in each environmental

condition. We validated these predictions by experimental evolu-

tion. The agreement between our predictions and experimental find-

ings suggests that cellular and population fitness landscapes can be

useful to predict short-term evolution. Critically, our predictive

models were based on quantitative knowledge of the fitness and

gene expression properties, as well as the genetic structure (design)

of the PF gene circuit. Without such knowledge, it would have been

impossible to predict what type of mutations arise and how fast.

Once this knowledge is acquired, however, cellular and population

fitness landscapes (Fig 1B) can be constructed, which are informa-

tive for predicting evolutionary outcomes.

We found a connection between the rates at which various

potentially beneficial mutations entered the populations and the

computationally predicted features of evolutionary dynamics, espe-

cially the number of mutant alleles (Appendix Fig S3). This allowed

a rough estimation of the relative probabilities of two mutation

types to occur spontaneously. We found that mutations eliminating

protein function were much more common than mutations fine-

tuning protein function (at least for rtTA in these experiments). The

availability of various beneficial mutation types depends on DNA

sequence and is rarely known a priori. We suggest nonetheless that

the availability of mutation types could be estimated by comparing

computational predictions with actual observations in similar labo-

ratory evolution experiments.

A unifying theme for all environmental conditions was the trade-

off between stress resistance and stress-free growth: genotypes that

resisted zeocin tended to grow slower in its absence. Such tradeoffs

were inherent by design to the ancestral PF synthetic gene circuit

(Fig 1B). However, in D0Z2, yeast adapted using extra-PF mutations

that were not subject to the original tradeoff. Most surprisingly,

these extra-circuit changes were subject to a different tradeoff,
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which resembled the original one in the PF gene circuit (Fig 6G).

Essentially, there was a cost for higher yEGFP::zeoR expression,

even if caused by extra-circuit mutations. Thus, without the built-in

tradeoff within the PF gene circuit, another tradeoff appears through

mutations outside of the PF gene circuit. This suggests a fundamen-

tal conflict between two different tasks (resistance to stress and fast

growth in stress-free conditions), typically resolved by Pareto opti-

mization (Shoval et al, 2012). Such “multi-layered” tradeoffs (when

multiple ways of coping with stress exist, but each has its own type

of tradeoff) may occur frequently in many natural systems, includ-

ing more complex genetic circuits in other organisms.

The ultimate success of synthetic biology will depend on the

long-term practical applicability of synthetic constructs. Despite

the growing number of synthetic constructs, their evolutionary

stability only recently began to be investigated in Escherichia coli

(Yokobayashi et al, 2002; Sleight et al, 2010; Wu et al, 2014). As far

as we know, this question has not been addressed in eukaryotes.

Our work fills this gap and generates insights for building evolution-

arily robust eukaryotic gene circuits. The PF gene circuit is based on

the rtTA activator, which is widely utilized in eukaryotic synthetic

biology. An important insight that we gained was that eukaryotic

activators like rtTA are not ideal if gene circuit stability is a concern.

There is evidence that eukaryotic activators are generally toxic

(Baron et al, 1997), which seems to be true for some prokaryotic

components as well (Tan et al, 2009). To address this problem,

some groups have tried to identify eukaryotic activators with

reduced toxicity (Baron et al, 1997; Khalil et al, 2012). Still, we

would recommend avoiding long-term use of common eukaryotic

activators (utilizing VP16, VP64, or GAL activator domains, includ-

ing in dCas9-, TALE-, or zinc finger-based synthetic regulators) until

their genetic stability has been carefully tested in long-term evolu-

tion experiments. Our experiments could be considered as testing

rtTA activator stability in various environments. The experiments

revealed the evolutionary instability of rtTA, but also led to the

discovery of mutant activators and gene circuit designs with lower

activator toxicity. These could become novel parts and designs mini-

mizing activator toxicity when eukaryotic activators are needed, as

in memory circuits (Ajo-Franklin et al, 2007; Burrill et al, 2012).

To conclude, this work highlights the unique ability of synthetic

biological constructs to provide improved, quantitative understand-

ing and predictability to fundamental biological processes such as

evolution and development. Similar studies will be essential to

assess and improve the evolutionary stability of synthetic gene

circuits, enabling their industrial and clinical application. Therefore,

synthetic biology is about to reverse the information flow toward

other fields of biology, the source of original inspiration for parts

and concepts for the first synthetic genetic constructs.

Materials and Methods

Strains and media

We used the haploid Saccharomyces cerevisiae strain YPH500

(a, ura3-52, lys2-801, ade2-101, trp1D63, his3D200, leu2D1; Stratagene,
La Jolla, CA) with the PF synthetic gene circuit stably integrated into

chromosome XV near the HIS3 locus as described previously

(Nevozhay et al, 2012). Cultures were grown in synthetic dropout

(SD) medium with 2% weight of sugar (glucose or galactose) and

the appropriate supplements (-his, -trp) to maintain auxotrophic

selection (reagents from Sigma, St. Louis, MO).

Experimental evolution

In preparation for the experiments, the PF ancestor strain was

streaked on SD 2% glucose plates. Plates were incubated at 30°C for

2 days. Well-isolated single colonies were picked into 1 ml SD-

his-trp 2% galactose liquid medium and incubated overnight at 30°C

with orbital shaking at 250 rpm and resuspended regularly (every

12 h or every 24 h). Fluorescence and cell density measurements

were taken daily or every 12 h. Samples were saved daily and

stored in 80% glycerol at �80°C for further studies. Further details

are described in the Appendix.

Fitness landscape mapping and parameter estimation

Ancestral PF cells were prepared as described above. Cultures

were then resuspended into the following treatments: zeocin only

(0.5, 1.0, 1.5 and 2.0 mg/ml), doxycycline only (0.2, 0.5, 1 and

2 lg/ml), and both doxycycline (0.2, 0.5, 1 and 2 lg/ml) and zeocin

(2 mg/ml). Cell density and fluorescence were measured every 6 h

over 72 h.

Population and cellular growth rates were estimated using mathe-

matical models described previously (Nevozhay et al, 2012) and as

described in the Appendix. Briefly, we used fitness functions to

model the effects of conditions and gene expression on growth. One

depends on zeocin and yEGFP::ZeoR protein concentration:

c1 ¼ v
vþziðF;ZÞ where Zi is inferred from the steady-state solution of a

dynamical model:

_Zi ¼ /Z � hzZi � sRZi

_B ¼ sRZi � dB

with Z, B, and R representing external zeocin, and bound and

unbound yEGFP::ZeoR protein concentrations (F = B + R). The

other depends on doxycycline and yEGFP::ZeoR protein concentra-

tion, assumed to be equal with rtTA protein concentration:

c2 ¼ g0
a

aþF C
Cþb

with C representing doxycycline concentration. The

total growth rate is then c = c1c2.
In each condition, the rate of switching from low to high expres-

sion and vice versa (cellular memory) was inferred from experimen-

tal dose responses in doxycycline as described previously

(Nevozhay et al, 2012; Appendix Fig S3E).

Resulting parameter estimates are presented in Appendix

Table S1.

Statistical analysis of gene expression and fitness data

Fluorescence and fitness values were compared using t-tests in our

study. We used an “independent samples” version of the t-test to

compare different conditions (for example, D0Z0 and D0Z2). On the

other hand, we used a dependent (paired) samples version of the

t-test to compare different time points within one environmental

condition. We applied Bonferroni correction for multiple compar-

isons whenever applicable. All tests were performed in STATISTICA

9.1 (StatSoft Inc., Tulsa, OK).

ª 2015 The Authors Molecular Systems Biology 11: 827 | 2015

Caleb González et al Regulatory network evolution Molecular Systems Biology

15

Published online: August 31, 2015 



Gene expression and fitness characterization of clonal
isolates (phenotyping)

Fitness of clones isolated from evolved populations was estimated

using an Infinite M200 Pro plate reader (Tecan) for OD600 measure-

ments (600 � 9 nm, number of reads = 25) of orbitally shaken

(280.8 rpm with amplitude 2 mm) 250 ll cultures in 96-well plates

at 30 � 0.5°C. Cultures were rediluted into fresh media of identical

composition every 12 h. Fluorescence was measured every 24 h by

flow cytometry.

Mathematical and computational models

We have developed two different types of predictive models. The

first model was a set of ordinary differential equations (ODEs) with

the number of ancestral cells, and mutants lumped into K, T, G cate-

gories as variables, assuming constant population size. A detailed

description of the model is in the Appendix.

The second model was an evolutionary simulation framework

explicitly accounting for each individual mutation over the time

course written in Python 3. In the framework, we used a linear

system of ordinary differential equations (ODEs) to describe ances-

tral and mutant cells, with experimentally inferred growth rates

(gL, gH) and switching rates (r, f). The simulation framework

includes population growth, zeocin internalization dynamics, entry

of mutation types K, T, or G into the population and simulated

12-h resuspensions (Appendix Fig S1B and C). We simulated all of

the experimental conditions with appropriate growth and switching

parameters. To test the effect of preexisting mutations, we

simulated a 24-h period without selection before changing the

parameters to those appropriate for each condition. The simulation

framework is described in greater detail in the Appendix along with

its Python script.

The rates of switching, growth, and zeocin internalization were all

determined experimentally prior to the simulations (Appendix

Table S1). Thus, the three free parameters in each condition were

beneficial mutation rate (l), and the relative probabilities of a mutation

being of type K, or T. These parameters were systematically scanned

in both models to determine the robustness of our predictions.

Mutation time course reconstruction

We reconstructed time courses of mutation frequencies for experi-

mental evolution replicates D2Z0-12 h-1 (Fig 3D), DiZ0-12 h-1

(Fig 3E), D0Z2-12 h-1 (Fig 4B), D2Z2-12 h-1 (Fig 5D), DiZ2-12 h-1

(Fig 5E), D2Z0-24 h-1 (Appendix Fig S4B), D0Z2-24 h-1 (Fig 4B,

Appendix Fig S5B), and D2Z2-24 h-1 (Appendix Fig S6B). In each

case, we had allele frequencies inferred from either Sanger

sequencing alone, whole-genome Illumina sequencing alone, or

both. For time points with allele frequency data from both meth-

ods, we plotted the mean of frequencies between the methods. If

only one sequencing method was applied for a given time point,

we used the corresponding inferred allele frequency. The number

of sequenced time points varied between 2 and 6 depending on

the condition (excluding t = 0 h; gray points). Once the ancestral

genotype reached 0%, we kept it at 0% (even if in rare cases

mutant alleles could not account for 100% of the population

afterward).

In many conditions, we observed multiple mutations in the same

sample. To obtain information on linkage, we performed Sanger

sequencing on clonal isolates, at mutation loci determined by

whole-genome Illumina sequencing. When linked mutations were

called, we averaged the whole-genome frequency estimates of the

two mutants to approximate the linked allele frequency. We then

averaged that value with frequency estimates from Sanger sequenc-

ing. This method permitted inference of linked-mutant frequencies

at time points that used both sequencing methods. For example,

Appendix Fig S4B shows just the whole-genome inferred allele

frequencies for all whole-genome-sequenced time points with no

linkage data (thus erroneously indicating lack of linkage for all

detected alleles). To illustrate the likely course of allele dynamics at

times between the measured points, we used second-order spline

interpolation (gray lines).

Expanded View for this article is available online:

http://msb.embopress.org
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