335 research outputs found

    Nano-enabled synthetic biology: A cell mimic based sensing platform for exploiting biochemical networks

    Get PDF
    Exploring and understanding how the smallest scale features of a cell affect biochemical reactions has always been a challenge. Nanoscale fabrication advancements have allowed scientists to create small volume reaction containers that resemble the physical scale of cell membranes. Engineers seek to use biological design principles to manipulate information and import new functionality to such synthetic devices, which in turn, play a crucial role in allowing them to explore the effects of physical transport and extreme conditions of temperature and pH on reaction systems. Engineered reaction containers can be physically and chemically defined to control the flux of molecules of different sizes and charge. The design and testing of such a container is described here. It has a volume of 19 pL and has defined slits of 10-200 nm. The device successfully contains DNA and protein molecules and has been used to conduct and analyze enzyme reactions under different substrate concentrations and a continuous cell-free protein synthesis. The effect of DNA concentration and slit size on protein yield is also discussed. Glucose oxidase and horseradish peroxidase were loaded in the small volume container and fed with a solution containing glucose and Amplex Red™ to produce Resorufin. Fluorescent microscopy was used to monitor the reaction, which was carried out under microfluidic control. Enzyme kinetics were characterized and compared with conventional scale results. Continuous cell free protein synthesis in arrays of nanoporous, picoliter volume containers has also been achieved. A multiscale fabrication process allows for the monolithic integration of the containers and an addressable microfluidic network. Synthesis of enhanced green fluorescent protein (eGFP) in the nanoporous containers continues beyond 24 hours and yields more than twice the amount of protein, on a per volume basis, than conventional scale batch reactions. These picoliter, nanoporous containers provide new ways for quick determination of enzyme kinetics and continuous protein synthesis in microfluidic systems. They can be used in a wide variety of applications such as drug discovery, clinical diagnostics and high-throughput screening

    Designer cell signal processing circuits for biotechnology

    Get PDF
    Microorganisms are able to respond effectively to diverse signals from their environment and internal metabolism owing to their inherent sophisticated information processing capacity. A central aim of synthetic biology is to control and reprogramme the signal processing pathways within living cells so as to realise repurposed, beneficial applications ranging from disease diagnosis and environmental sensing to chemical bioproduction. To date most examples of synthetic biological signal processing have been built based on digital information flow, though analogue computing is being developed to cope with more complex operations and larger sets of variables. Great progress has been made in expanding the categories of characterised biological components that can be used for cellular signal manipulation, thereby allowing synthetic biologists to more rationally programme increasingly complex behaviours into living cells. Here we present a current overview of the components and strategies that exist for designer cell signal processing and decision making, discuss how these have been implemented in prototype systems for therapeutic, environmental, and industrial biotechnological applications, and examine emerging challenges in this promising field

    ParAlleL:A Novel Population-Based Approach to Biological Logic Gates

    Get PDF
    <p>In vivo logic gates have proven difficult to combine into larger devices. Our cell-based logic system, ParAlleL, decomposes a large circuit into a collection of small subcircuits working in parallel, each subcircuit responding to a different combination of inputs. A final global output is then generated by a combination of the responses. Using ParAlleL, for the first time a completely functional 3-bit full adder and full subtractor were generated using Escherichia coli cells, as well as a calculator-style display that shows a numeric result, from 0 to 7, when the proper 3 bit binary inputs are introduced into the system. ParAlleL demonstrates the use of a parallel approach for the design of cell-based logic gates that facilitates the generation and analysis of complex processes, without the need for complex genetic engineering.</p

    A microRNA negative feedback loop downregulates vesicle transport and inhibits fear memory

    Get PDF
    The SNARE-mediated vesicular transport pathway plays major roles in synaptic remodeling associated with formation of long-term memories, but the mechanisms that regulate this pathway during memory acquisition are not fully understood. Here we identify miRNAs that are up-regulated in the rodent hippocampus upon contextual fear-conditioning and identify the vesicular transport and synaptogenesis pathways as the major targets of the fear-induced miRNAs. We demonstrate that miR-153, a member of this group, inhibits the expression of key components of the vesicular transport machinery, and down-regulates Glutamate receptor A1 trafficking and neurotransmitter release. MiR-153 expression is specifically induced during LTP induction in hippocampal slices and its knockdown in the hippocampus of adult mice results in enhanced fear memory. Our results suggest that miR-153, and possibly other fear-induced miRNAs, act as components of a negative feedback loop that blocks neuronal hyperactivity at least partly through the inhibition of the vesicular transport pathway.Brain & Behavior Research Foundation (Young Investigator Award)JPB Foundatio

    Quantitative Analysis of Histone Modifications: Formaldehyde Is a Source of Pathological N6-Formyllysine That Is Refractory to Histone Deacetylases

    Get PDF
    Aberrant protein modifications play an important role in the pathophysiology of many human diseases, in terms of both dysfunction of physiological modifications and the formation of pathological modifications by reaction of proteins with endogenous electrophiles. Recent studies have identified a chemical homolog of lysine acetylation, N[superscript 6]-formyllysine, as an abundant modification of histone and chromatin proteins, one possible source of which is the reaction of lysine with 3′-formylphosphate residues from DNA oxidation. Using a new liquid chromatography-coupled to tandem mass spectrometry method to quantify all N[superscript 6]-methyl-, -acetyl- and -formyl-lysine modifications, we now report that endogenous formaldehyde is a major source of N[superscript 6]-formyllysine and that this adduct is widespread among cellular proteins in all compartments. N[superscript 6]-formyllysine was evenly distributed among different classes of histone proteins from human TK6 cells at 1–4 modifications per 10[superscript 4] lysines, which contrasted strongly with lysine acetylation and mono-, di-, and tri-methylation levels of 1.5-380, 5-870, 0-1400, and 0-390 per 10[superscript 4] lysines, respectively. While isotope labeling studies revealed that lysine demethylation is not a source of N[superscript 6]-formyllysine in histones, formaldehyde exposure was observed to cause a dose-dependent increase in N[superscript 6]-formyllysine, with use of [[superscript 13]C,[superscript 2]H[subscript 2]]-formaldehyde revealing unchanged levels of adducts derived from endogenous sources. Inhibitors of class I and class II histone deacetylases did not affect the levels of N[superscript 6]-formyllysine in TK6 cells, and the class III histone deacetylase, SIRT1, had minimal activity (<10%) with a peptide substrate containing the formyl adduct. These data suggest that N[superscript 6]-formyllysine is refractory to removal by histone deacetylases, which supports the idea that this abundant protein modification could interfere with normal regulation of gene expression if it arises at conserved sites of physiological protein secondary modification

    New Applications for Phage Integrases

    Get PDF
    Within the last twenty-five years bacteriophage integrases have rapidly risen to prominence as genetic tools for a wide range of applications from basic cloning to genome engineering. Serine integrases such as that from ϕC31 and its relatives have found an especially wide-range of applications within diverse micro-organisms right through to multi-cellular eukaryotes. Here we review the mechanisms of the two major families of integrases, the tyrosine and serine integrases, and the advantages and disadvantages of each type as they are applied in genome engineering and synthetic biology. In particular, we focus on the new areas of metabolic pathway construction and optimisation, bio-computing, heterologous expression and multiplexed assembly techniques. Integrases are versatile and efficient tools that can be used in conjunction with the various extant molecular biology tools to streamline the synthetic biology production line

    Identification of Novel α-Synuclein Isoforms in Human Brain Tissue by using an Online NanoLC-ESI-FTICR-MS Method

    Get PDF
    Parkinson’s disease (PD) and Dementia with Lewy bodies (DLB) are neurodegenerative diseases that are characterized by intra-neuronal inclusions of Lewy bodies in distinct brain regions. These inclusions consist mainly of aggregated α-synuclein (α-syn) protein. The present study used immunoprecipitation combined with nanoflow liquid chromatography (LC) coupled to high resolution electrospray ionization Fourier transform ion cyclotron resonance tandem mass spectrometry (ESI-FTICR-MS/MS) to determine known and novel isoforms of α-syn in brain tissue homogenates. N-terminally acetylated full-length α-syn (Ac-α-syn1–140) and two N-terminally acetylated C-terminally truncated forms of α-syn (Ac-α-syn1–139 and Ac-α-syn1–103) were found. The different forms of α-syn were further studied by Western blotting in brain tissue homogenates from the temporal cortex Brodmann area 36 (BA36) and the dorsolateral prefrontal cortex BA9 derived from controls, patients with DLB and PD with dementia (PDD). Quantification of α-syn in each brain tissue fraction was performed using a novel enzyme-linked immunosorbent assay (ELISA)

    Identification of Combinatorial Patterns of Post-Translational Modifications on Individual Histones in the Mouse Brain

    Get PDF
    Post-translational modifications (PTMs) of proteins are biochemical processes required for cellular functions and signalling that occur in every sub-cellular compartment. Multiple protein PTMs exist, and are established by specific enzymes that can act in basal conditions and upon cellular activity. In the nucleus, histone proteins are subjected to numerous PTMs that together form a histone code that contributes to regulate transcriptional activity and gene expression. Despite their importance however, histone PTMs have remained poorly characterised in most tissues, in particular the brain where they are thought to be required for complex functions such as learning and memory formation. Here, we report the comprehensive identification of histone PTMs, of their combinatorial patterns, and of the rules that govern these patterns in the adult mouse brain. Based on liquid chromatography, electron transfer, and collision-induced dissociation mass spectrometry, we generated a dataset containing a total of 10,646 peptides from H1, H2A, H2B, H3, H4, and variants in the adult brain. 1475 of these peptides carried one or more PTMs, including 141 unique sites and a total of 58 novel sites not described before. We observed that these PTMs are not only classical modifications such as serine/threonine (Ser/Thr) phosphorylation, lysine (Lys) acetylation, and Lys/arginine (Arg) methylation, but also include several atypical modifications such as Ser/Thr acetylation, and Lys butyrylation, crotonylation, and propionylation. Using synthetic peptides, we validated the presence of these atypical novel PTMs in the mouse brain. The application of data-mining algorithms further revealed that histone PTMs occur in specific combinations with different ratios. Overall, the present data newly identify a specific histone code in the mouse brain and reveal its level of complexity, suggesting its potential relevance for higher-order brain functions

    Multicellular Computing Using Conjugation for Wiring

    Get PDF
    Recent efforts in synthetic biology have focussed on the implementation of logical functions within living cells. One aim is to facilitate both internal ‘‘re-programming’’ and external control of cells, with potential applications in a wide range of domains. However, fundamental limitations on the degree to which single cells may be re-engineered have led to a growth of interest in multicellular systems, in which a ‘‘computation’’ is distributed over a number of different cell types, in a manner analogous to modern computer networks. Within this model, individual cell type perform specific sub-tasks, the results of which are then communicated to other cell types for further processing. The manner in which outputs are communicated is therefore of great significance to the overall success of such a scheme. Previous experiments in distributed cellular computation have used global communication schemes, such as quorum sensing (QS), to implement the ‘‘wiring’’ between cell types. While useful, this method lacks specificity, and limits the amount of information that may be transferred at any one time. We propose an alternative scheme, based on specific cell-cell conjugation. This mechanism allows for the direct transfer of genetic information between bacteria, via circular DNA strands known as plasmids. We design a multicellular population that is able to compute, in a distributed fashion, a Boolean XOR function. Through this, we describe a general scheme for distributed logic that works by mixing different strains in a single population; this constitutes an important advantage of our novel approach. Importantly, the amount of genetic information exchanged through conjugation is significantly higher than the amount possible through QS-based communication. We provide full computational modelling and simulation results, using deterministic, stochastic and spatially-explicit methods. These simulations explore the behaviour of one possible conjugation-wired cellular computing system under different conditions, and provide baseline information for future laboratory implementations
    corecore