8 research outputs found

    Effective shell-model hamiltonians from realistic nucleon-nucleon potentials within a perturbative approach

    Full text link
    This paper discusses the derivation of an effective shell-model hamiltonian starting from a realistic nucleon-nucleon potential by way of perturbation theory. More precisely, we present the state of the art of this approach when the starting point is the perturbative expansion of the Q-box vertex function. Questions arising from diagrammatics, intermediate-states and order-by-order convergences, and their dependence on the chosen nucleon-nucleon potential, are discussed in detail, and the results of numerical applications for the p-shell model space starting from chiral next-to-next-to-next-to-leading order potentials are shown. Moreover, an alternative graphical method to derive the effective hamiltonian, based on the Z-box vertex function recently introduced by Suzuki et al., is applied to the case of a non-degenerate (0+2) hbaromega model space. Finally, our shell-model results are compared with the exact ones obtained from no-core shell-model calculations.Comment: 40 pages, 22 figures, 4 tables. Accepted for publication in Annals of Physic

    Applications and Advances in Electronic-Nose Technologies

    Get PDF
    Electronic-nose devices have received considerable attention in the field of sensor technology during the past twenty years, largely due to the discovery of numerous applications derived from research in diverse fields of applied sciences. Recent applications of electronic nose technologies have come through advances in sensor design, material improvements, software innovations and progress in microcircuitry design and systems integration. The invention of many new e-nose sensor types and arrays, based on different detection principles and mechanisms, is closely correlated with the expansion of new applications. Electronic noses have provided a plethora of benefits to a variety of commercial industries, including the agricultural, biomedical, cosmetics, environmental, food, manufacturing, military, pharmaceutical, regulatory, and various scientific research fields. Advances have improved product attributes, uniformity, and consistency as a result of increases in quality control capabilities afforded by electronic-nose monitoring of all phases of industrial manufacturing processes. This paper is a review of the major electronic-nose technologies, developed since this specialized field was born and became prominent in the mid 1980s, and a summarization of some of the more important and useful applications that have been of greatest benefit to man
    corecore