136 research outputs found

    Fusing enzymes to transcription activator LuxR for the rapid creation of metabolite sensors

    Get PDF
    Metabolite sensors have been applied for high-throughput screening for improved biosynthetic pathways, as well as for dynamic control of the metabolic networks. Obviously, however, current repertoire of natural sensors covers only a small fraction of the known metabolite. We have been developing the new robust workflow for the rapid creation of metabolite sensors where biosynthetic enzymes can be adopted as the sensory (recognizing) components. Most of the known metabolites act as the direct substrates of some enzymes, and they are recognized and converted by these enzymes in physiologically relevant concentrations. Thus, ever-increasing repertoire of available enzymes is a rich and reliable source of sensory units. We found that the transcription activator LuxR can be fused with various biosynthetic enzymes without losing its function. By adding moderately de-stabilizing mutations, typically by random mutagenesis of the resultant fusion proteins followed by screening a small number (~100) of variants, we could have quickly isolated variants that can activate LuxR-dependent promoter in response to the substrates of the enzymes fused to LuxR. In this presentation, we demonstrate various metabolites can be detected by this manner. Detailed analysis of the thus-obtained fusion proteins indicated that function of LuxR is dependent on the substrate binding-induced stabilization of the enzymes. The biosensors with this mode of action exhibited various unique features. For instance, we found that the sensitivity (EC50) and dynamic range of these sensors to the target metabolites can be flexibly altered by the concentration of homoserine lactones, the cognate ligand of LuxR, in the media. Also, this provides unique opportunity to indirectly visualizing the substrate-binding to the enzyme in high-throughput manner. Indeed, multi-round mutagenesis and screening of the fusion protein of isopentenyl diphosphate isomerase (IDI) with LuxR variant (IDI-LuxR) revealed that many of the mutations that improved sensory performance of IDI-LuxR also elevated the catalytic performance of IDI. Some of such mutations turned out to elevate IDI activity even without fusion partner LuxR. Altogether, by fusing to LuxR, random mutagenesis, and traditional reporter (fluorescence)-based screening, one can not only adopt a variety of biosynthetic enzymes as sensor components but also laboratory evolve their catalytic functions

    The RNA acetyltransferase driven by ATP hydrolysis synthesizes N4-acetylcytidine of tRNA anticodon

    Get PDF
    The wobble base of Escherichia coli elongator tRNAMet is modified to N4-acetylcytidine (ac4C), which is thought to ensure the precise recognition of the AUG codon by preventing misreading of near-cognate AUA codon. By employing genome-wide screen of uncharacterized genes in Escherichia coli (‘ribonucleome analysis'), we found the ypfI gene, which we named tmcA (tRNAMet cytidine acetyltransferase), to be responsible for ac4C formation. TmcA is an enzyme that contains a Walker-type ATPase domain in its N-terminal region and an N-acetyltransferase domain in its C-terminal region. Recombinant TmcA specifically acetylated the wobble base of E. coli elongator tRNAMet by utilizing acetyl-coenzyme A (CoA) and ATP (or GTP). ATP/GTP hydrolysis by TmcA is stimulated in the presence of acetyl-CoA and tRNAMet. A mutation study revealed that E. coli TmcA strictly discriminates elongator tRNAMet from the structurally similar tRNAIle by mainly recognizing the C27–G43 pair in the anticodon stem. Our findings reveal an elaborate mechanism embedded in tRNAMet and tRNAIle for the accurate decoding of AUA/AUG codons on the basis of the recognition of wobble bases by the respective RNA-modifying enzymes

    Hsp104-Dependent Remodeling of Prion Complexes Mediates Protein-Only Inheritance

    Get PDF
    Inheritance of phenotypic traits depends on two key events: replication of the determinant of that trait and partitioning of these copies between mother and daughter cells. Although these processes are well understood for nucleic acid–based genes, the mechanisms by which protein-only or prion-based genetic elements direct phenotypic inheritance are poorly understood. Here, we report a process crucial for inheritance of the Saccharomyces cerevisiae prion [PSI(+)], a self-replicating conformer of the Sup35 protein. By tightly controlling expression of a Sup35-GFP fusion, we directly observe remodeling of existing Sup35([PSI+]) complexes in vivo. This dynamic change in Sup35([PSI+]) is lost when the molecular chaperone Hsp104, a factor essential for propagation of all yeast prions, is functionally impaired. The loss of Sup35([PSI+]) remodeling by Hsp104 decreases the mobility of these complexes in the cytosol, creates a segregation bias that limits their transmission to daughter cells, and consequently diminishes the efficiency of conversion of newly made Sup35 to the prion form. Our observations resolve several seemingly conflicting reports on the mechanism of Hsp104 action and point to a single Hsp104-dependent event in prion propagation

    DISCOVERY OF DRAMATIC OPTICAL VARIABILITY IN SDSS J1100+4421: A PECULIAR RADIO-LOUD NARROW-LINE SEYFERT 1 GALAXY?

    Get PDF
    We present our discovery of dramatic variability in SDSS J1100+4421 by the high-cadence transient survey Kiso Supernova Survey (KISS). The source brightened in the optical by at least a factor of three within about half a day. Spectroscopic observations suggest that this object is likely a narrow-line Seyfert 1 galaxy (NLS1) at z=0.840, however with unusually strong narrow emission lines. The estimated black hole mass of ~ 10^7 Msun implies bolometric nuclear luminosity close to the Eddington limit. SDSS J1100+4421 is also extremely radio-loud, with a radio loudness parameter of R ~ 4 x 10^2 - 3 x 10^3, which implies the presence of relativistic jets. Rapid and large-amplitude optical variability of the target, reminiscent of that found in a few radio- and gamma-ray loud NLS1s, is therefore produced most likely in a blazar-like core. The 1.4 GHz radio image of the source shows an extended structure with a linear size of about 100 kpc. If SDSS J1100+4421 is a genuine NLS1, as suggested here, this radio structure would then be the largest ever discovered in this type of active galaxie

    [SWI+], the Prion Formed by the Chromatin Remodeling Factor Swi1, Is Highly Sensitive to Alterations in Hsp70 Chaperone System Activity

    Get PDF
    The yeast prion [SWI+], formed of heritable amyloid aggregates of the Swi1 protein, results in a partial loss of function of the SWI/SNF chromatin-remodeling complex, required for the regulation of a diverse set of genes. Our genetic analysis revealed that [SWI+] propagation is highly dependent upon the action of members of the Hsp70 molecular chaperone system, specifically the Hsp70 Ssa, two of its J-protein co-chaperones, Sis1 and Ydj1, and the nucleotide exchange factors of the Hsp110 family (Sse1/2). Notably, while all yeast prions tested thus far require Sis1, [SWI+] is the only one known to require the activity of Ydj1, the most abundant J-protein in yeast. The C-terminal region of Ydj1, which contains the client protein interaction domain, is required for [SWI+] propagation. However, Ydj1 is not unique in this regard, as another, closely related J-protein, Apj1, can substitute for it when expressed at a level approaching that of Ydj1. While dependent upon Ydj1 and Sis1 for propagation, [SWI+] is also highly sensitive to overexpression of both J-proteins. However, this increased prion-loss requires only the highly conserved 70 amino acid J-domain, which serves to stimulate the ATPase activity of Hsp70 and thus to stabilize its interaction with client protein. Overexpression of the J-domain from Sis1, Ydj1, or Apj1 is sufficient to destabilize [SWI+]. In addition, [SWI+] is lost upon overexpression of Sse nucleotide exchange factors, which act to destabilize Hsp70's interaction with client proteins. Given the plethora of genes affected by the activity of the SWI/SNF chromatin-remodeling complex, it is possible that this sensitivity of [SWI+] to the activity of Hsp70 chaperone machinery may serve a regulatory role, keeping this prion in an easily-lost, meta-stable state. Such sensitivity may provide a means to reach an optimal balance of phenotypic diversity within a cell population to better adapt to stressful environments

    Differential roles of epigenetic changes and Foxp3 expression in regulatory T cell-specific transcriptional regulation

    Get PDF
    Naturally occurring regulatory T (Treg) cells, which specifically express the transcription factor forkhead box P3 (Foxp3), are engaged in the maintenance of immunological self-tolerance and homeostasis. By transcriptional start site cluster analysis, we assessed here how genome-wide patterns of DNA methylation or Foxp3 binding sites were associated with Treg-specific gene expression. We found that Treg-specific DNA hypomethylated regions were closely associated with Treg up-regulated transcriptional start site clusters, whereas Foxp3 binding regions had no significant correlation with either up- or down-regulated clusters in nonactivated Treg cells. However, in activated Treg cells, Foxp3 binding regions showed a strong correlation with down-regulated clusters. In accordance with these findings, the above two features of activation-dependent gene regulation in Treg cells tend to occur at different locations in the genome. The results collectively indicate that Treg-specific DNA hypomethylation is instrumental in gene up-regulation in steady state Treg cells, whereas Foxp3 down-regulates the expression of its target genes in activated Treg cells. Thus, the two events seem to play distinct but complementary roles in Treg-specific gene expression

    The Constrained Maximal Expression Level Owing to Haploidy Shapes Gene Content on the Mammalian X Chromosome.

    Get PDF
    X chromosomes are unusual in many regards, not least of which is their nonrandom gene content. The causes of this bias are commonly discussed in the context of sexual antagonism and the avoidance of activity in the male germline. Here, we examine the notion that, at least in some taxa, functionally biased gene content may more profoundly be shaped by limits imposed on gene expression owing to haploid expression of the X chromosome. Notably, if the X, as in primates, is transcribed at rates comparable to the ancestral rate (per promoter) prior to the X chromosome formation, then the X is not a tolerable environment for genes with very high maximal net levels of expression, owing to transcriptional traffic jams. We test this hypothesis using The Encyclopedia of DNA Elements (ENCODE) and data from the Functional Annotation of the Mammalian Genome (FANTOM5) project. As predicted, the maximal expression of human X-linked genes is much lower than that of genes on autosomes: on average, maximal expression is three times lower on the X chromosome than on autosomes. Similarly, autosome-to-X retroposition events are associated with lower maximal expression of retrogenes on the X than seen for X-to-autosome retrogenes on autosomes. Also as expected, X-linked genes have a lesser degree of increase in gene expression than autosomal ones (compared to the human/Chimpanzee common ancestor) if highly expressed, but not if lowly expressed. The traffic jam model also explains the known lower breadth of expression for genes on the X (and the Z of birds), as genes with broad expression are, on average, those with high maximal expression. As then further predicted, highly expressed tissue-specific genes are also rare on the X and broadly expressed genes on the X tend to be lowly expressed, both indicating that the trend is shaped by the maximal expression level not the breadth of expression per se. Importantly, a limit to the maximal expression level explains biased tissue of expression profiles of X-linked genes. Tissues whose tissue-specific genes are very highly expressed (e.g., secretory tissues, tissues abundant in structural proteins) are also tissues in which gene expression is relatively rare on the X chromosome. These trends cannot be fully accounted for in terms of alternative models of biased expression. In conclusion, the notion that it is hard for genes on the Therian X to be highly expressed, owing to transcriptional traffic jams, provides a simple yet robustly supported rationale of many peculiar features of X's gene content, gene expression, and evolution

    Discovery of widespread transcription initiation at microsatellites predictable by sequence-based deep neural network

    Get PDF
    Using the Cap Analysis of Gene Expression (CAGE) technology, the FANTOM5 consortium provided one of the most comprehensive maps of transcription start sites (TSSs) in several species. Strikingly, ~72% of them could not be assigned to a specific gene and initiate at unconventional regions, outside promoters or enhancers. Here, we probe these unassigned TSSs and show that, in all species studied, a significant fraction of CAGE peaks initiate at microsatellites, also called short tandem repeats (STRs). To confirm this transcription, we develop Cap Trap RNA-seq, a technology which combines cap trapping and long read MinION sequencing. We train sequence-based deep learning models able to predict CAGE signal at STRs with high accuracy. These models unveil the importance of STR surrounding sequences not only to distinguish STR classes, but also to predict the level of transcription initiation. Importantly, genetic variants linked to human diseases are preferentially found at STRs with high transcription initiation level, supporting the biological and clinical relevance of transcription initiation at STRs. Together, our results extend the repertoire of non-coding transcription associated with DNA tandem repeats and complexify STR polymorphism
    corecore