171 research outputs found

    View-tolerant face recognition and Hebbian learning imply mirror-symmetric neural tuning to head orientation

    Get PDF
    The primate brain contains a hierarchy of visual areas, dubbed the ventral stream, which rapidly computes object representations that are both specific for object identity and relatively robust against identity-preserving transformations like depth-rotations. Current computational models of object recognition, including recent deep learning networks, generate these properties through a hierarchy of alternating selectivity-increasing filtering and tolerance-increasing pooling operations, similar to simple-complex cells operations. While simulations of these models recapitulate the ventral stream's progression from early view-specific to late view-tolerant representations, they fail to generate the most salient property of the intermediate representation for faces found in the brain: mirror-symmetric tuning of the neural population to head orientation. Here we prove that a class of hierarchical architectures and a broad set of biologically plausible learning rules can provide approximate invariance at the top level of the network. While most of the learning rules do not yield mirror-symmetry in the mid-level representations, we characterize a specific biologically-plausible Hebb-type learning rule that is guaranteed to generate mirror-symmetric tuning to faces tuning at intermediate levels of the architecture

    A general-purpose mechanism of visual feature association in visual word identification and beyond

    Get PDF
    As writing systems are a relatively novel invention (slightly over 5 kya),1 they could not have influenced the evolution of our species. Instead, reading might recycle evolutionary older mechanisms that originally supported other tasks2,3 and preceded the emergence of written language. Accordingly, it has been shown that baboons and pigeons can be trained to distinguish words from nonwords based on orthographic regularities in letter co-occurrence.4,5 This suggests that part of what is usually considered reading-specific processing could be performed by domain-general visual mechanisms. Here, we tested this hypothesis in humans: if the reading system relies on domain-general visual mechanisms, some of the effects that are often found with orthographic material should also be observable with non-orthographic visual stimuli. We performed three experiments using the same exact design but with visual stimuli that progressively departed from orthographic material. Subjects were passively familiarized with a set of composite visual items and tested in an oddball paradigm for their ability to detect novel stimuli. Participants showed robust sensitivity to the co-occurrence of features (\u201cbigram\u201d coding) with strings of letter-like symbols but also with made-up 3D objects and sinusoidal gratings. This suggests that the processing mechanisms involved in the visual recognition of novel words also support the recognition of other novel visual objects. These mechanisms would allow the visual system to capture statistical regularities in the visual environment.6\u20139 We hope that this work will inspire models of reading that, although addressing its unique aspects, place it within the broader context of vision. Vidal et al. show that an effect usually studied in the context of reading\u2014sensitivity to bigram frequencies\u2014is also found when participants are presented with images of objects and circular sinusoidal gratings. This suggests that some mechanisms implied in the processing of novel words are in fact of general purpose

    A Developmental Approach to Machine Learning?

    Get PDF
    Visual learning depends on both the algorithms and the training material. This essay considers the natural statistics of infant- and toddler-egocentric vision. These natural training sets for human visual object recognition are very different from the training data fed into machine vision systems. Rather than equal experiences with all kinds of things, toddlers experience extremely skewed distributions with many repeated occurrences of a very few things. And though highly variable when considered as a whole, individual views of things are experienced in a specific order – with slow, smooth visual changes moment-to-moment, and developmentally ordered transitions in scene content. We propose that the skewed, ordered, biased visual experiences of infants and toddlers are the training data that allow human learners to develop a way to recognize everything, both the pervasively present entities and the rarely encountered ones. The joint consideration of real-world statistics for learning by researchers of human and machine learning seems likely to bring advances in both disciplines

    Efficient Sparse Coding in Early Sensory Processing: Lessons from Signal Recovery

    Get PDF
    Sensory representations are not only sparse, but often overcomplete: coding units significantly outnumber the input units. For models of neural coding this overcompleteness poses a computational challenge for shaping the signal processing channels as well as for using the large and sparse representations in an efficient way. We argue that higher level overcompleteness becomes computationally tractable by imposing sparsity on synaptic activity and we also show that such structural sparsity can be facilitated by statistics based decomposition of the stimuli into typical and atypical parts prior to sparse coding. Typical parts represent large-scale correlations, thus they can be significantly compressed. Atypical parts, on the other hand, represent local features and are the subjects of actual sparse coding. When applied on natural images, our decomposition based sparse coding model can efficiently form overcomplete codes and both center-surround and oriented filters are obtained similar to those observed in the retina and the primary visual cortex, respectively. Therefore we hypothesize that the proposed computational architecture can be seen as a coherent functional model of the first stages of sensory coding in early vision

    Natural Image Coding in V1: How Much Use is Orientation Selectivity?

    Get PDF
    Orientation selectivity is the most striking feature of simple cell coding in V1 which has been shown to emerge from the reduction of higher-order correlations in natural images in a large variety of statistical image models. The most parsimonious one among these models is linear Independent Component Analysis (ICA), whereas second-order decorrelation transformations such as Principal Component Analysis (PCA) do not yield oriented filters. Because of this finding it has been suggested that the emergence of orientation selectivity may be explained by higher-order redundancy reduction. In order to assess the tenability of this hypothesis, it is an important empirical question how much more redundancies can be removed with ICA in comparison to PCA, or other second-order decorrelation methods. This question has not yet been settled, as over the last ten years contradicting results have been reported ranging from less than five to more than hundred percent extra gain for ICA. Here, we aim at resolving this conflict by presenting a very careful and comprehensive analysis using three evaluation criteria related to redundancy reduction: In addition to the multi-information and the average log-loss we compute, for the first time, complete rate-distortion curves for ICA in comparison with PCA. Without exception, we find that the advantage of the ICA filters is surprisingly small. Furthermore, we show that a simple spherically symmetric distribution with only two parameters can fit the data even better than the probabilistic model underlying ICA. Since spherically symmetric models are agnostic with respect to the specific filter shapes, we conlude that orientation selectivity is unlikely to play a critical role for redundancy reduction

    Towards a Mathematical Theory of Cortical Micro-circuits

    Get PDF
    The theoretical setting of hierarchical Bayesian inference is gaining acceptance as a framework for understanding cortical computation. In this paper, we describe how Bayesian belief propagation in a spatio-temporal hierarchical model, called Hierarchical Temporal Memory (HTM), can lead to a mathematical model for cortical circuits. An HTM node is abstracted using a coincidence detector and a mixture of Markov chains. Bayesian belief propagation equations for such an HTM node define a set of functional constraints for a neuronal implementation. Anatomical data provide a contrasting set of organizational constraints. The combination of these two constraints suggests a theoretically derived interpretation for many anatomical and physiological features and predicts several others. We describe the pattern recognition capabilities of HTM networks and demonstrate the application of the derived circuits for modeling the subjective contour effect. We also discuss how the theory and the circuit can be extended to explain cortical features that are not explained by the current model and describe testable predictions that can be derived from the model

    A Structured Model of Video Reproduces Primary Visual Cortical Organisation

    Get PDF
    The visual system must learn to infer the presence of objects and features in the world from the images it encounters, and as such it must, either implicitly or explicitly, model the way these elements interact to create the image. Do the response properties of cells in the mammalian visual system reflect this constraint? To address this question, we constructed a probabilistic model in which the identity and attributes of simple visual elements were represented explicitly and learnt the parameters of this model from unparsed, natural video sequences. After learning, the behaviour and grouping of variables in the probabilistic model corresponded closely to functional and anatomical properties of simple and complex cells in the primary visual cortex (V1). In particular, feature identity variables were activated in a way that resembled the activity of complex cells, while feature attribute variables responded much like simple cells. Furthermore, the grouping of the attributes within the model closely parallelled the reported anatomical grouping of simple cells in cat V1. Thus, this generative model makes explicit an interpretation of complex and simple cells as elements in the segmentation of a visual scene into basic independent features, along with a parametrisation of their moment-by-moment appearances. We speculate that such a segmentation may form the initial stage of a hierarchical system that progressively separates the identity and appearance of more articulated visual elements, culminating in view-invariant object recognition

    A Spiking Neuron Model of Word Associations for the Remote Associates Test

    Get PDF
    Generating associations is important for cognitive tasks including language acquisition and creative problem solving. It remains an open question how the brain represents and processes associations. The Remote Associates Test (RAT) is a task, originally used in creativity research, that is heavily dependent on generating associations in a search for the solutions to individual RAT problems. In this work we present a model that solves the test. Compared to earlier modeling work on the RAT, our hybrid (i.e., non-developmental) model is implemented in a spiking neural network by means of the Neural Engineering Framework (NEF), demonstrating that it is possible for spiking neurons to be organized to store the employed representations and to manipulate them. In particular, the model shows that distributed representations can support sophisticated linguistic processing. The model was validated on human behavioral data including the typical length of response sequences and similarity relationships in produced responses. These data suggest two cognitive processes that are involved in solving the RAT: one process generates potential responses and a second process filters the responses
    corecore