820 research outputs found

    Reading out a spatiotemporal population code by imaging neighbouring parallel fibre axons in vivo.

    Get PDF
    The spatiotemporal pattern of synaptic inputs to the dendritic tree is crucial for synaptic integration and plasticity. However, it is not known if input patterns driven by sensory stimuli are structured or random. Here we investigate the spatial patterning of synaptic inputs by directly monitoring presynaptic activity in the intact mouse brain on the micron scale. Using in vivo calcium imaging of multiple neighbouring cerebellar parallel fibre axons, we find evidence for clustered patterns of axonal activity during sensory processing. The clustered parallel fibre input we observe is ideally suited for driving dendritic spikes, postsynaptic calcium signalling, and synaptic plasticity in downstream Purkinje cells, and is thus likely to be a major feature of cerebellar function during sensory processing

    Predicting the synaptic information efficacy in cortical layer 5 pyramidal neurons using a minimal integrate-and-fire model

    Get PDF
    Synaptic information efficacy (SIE) is a statistical measure to quantify the efficacy of a synapse. It measures how much information is gained, on the average, about the output spike train of a postsynaptic neuron if the input spike train is known. It is a particularly appropriate measure for assessing the input–output relationship of neurons receiving dynamic stimuli. Here, we compare the SIE of simulated synaptic inputs measured experimentally in layer 5 cortical pyramidal neurons in vitro with the SIE computed from a minimal model constructed to fit the recorded data. We show that even with a simple model that is far from perfect in predicting the precise timing of the output spikes of the real neuron, the SIE can still be accurately predicted. This arises from the ability of the model to predict output spikes influenced by the input more accurately than those driven by the background current. This indicates that in this context, some spikes may be more important than others. Lastly we demonstrate another aspect where using mutual information could be beneficial in evaluating the quality of a model, by measuring the mutual information between the model’s output and the neuron’s output. The SIE, thus, could be a useful tool for assessing the quality of models of single neurons in preserving input–output relationship, a property that becomes crucial when we start connecting these reduced models to construct complex realistic neuronal networks

    Biochemical Analysis of Slam – a polarity protein during early Drosophila embryogenesis

    Get PDF
    Slow as molasses (slam) is a gene essential for embryonic development of Drosophila. Slam is necessary for the formation and ingression of the plasma membrane and its polarisation, i.e. the formation of the basal cortical domain. Later, Slam controls the directed migration of primordial germ cells. Slam may organise a platform for Rho signalling and membrane trafficking. Slam displays the striking feature that Slam protein and slam mRNA colocalize at the basal domain and form a complex which can be isolated by immunoprecipitation. The interaction of the protein and the mRNA at the basal domain of the plasma membrane is important for the mRNA localization and its efficient translation. However, little is known about the molecular mechanisms by which Slam fulfils its tasks. Slam encodes an unconserved protein of 1196 amino acid residues with no obvious domains and with large regions predicted to be structurally disordered. This study aims to further investigate the biochemistry and molecular interactors of Slam to advance the understanding of membrane formation and polarisation. Firstly, a series of Slam truncations were constructed and expressed in E. coli to identify Slam fragments which may be suitable for crystallographic studies in the future. Investigating Slam’s structure will give fundamental insights into its nature and way of function. A protocol for the purification of the C-terminal 129 aa region of Slam was developed and optimised to generate high-purity submilligram amounts of the fragment. Secondly, the proteome of Slam interactors was isolated and identified by mass spectrometry. To this end, a multistep immunoprecipitation protocol was developed. Previously known interactors were confirmed. Strikingly, the interactors fall into functional classes. Multiple components of the actin cytoskeleton were isolated, such as components of the Arp2/3 complex, alpha-actinin and non-muscle Myosin II. Furthermore, components related to the cell cortex and membrane trafficking were found, including Cindr, Restin homolog (clip190) and Jaguar (Myosin 95F). The list of interactors will serve as a starting point for future studies resolving the role of Slam for membrane formation and its interaction with the actin cortex.2021-09-2

    A synaptic learning rule for exploiting nonlinear dendritic computation

    Get PDF
    Information processing in the brain depends on the integration of synaptic input distributed throughout neuronal dendrites. Dendritic integration is a hierarchical process, proposed to be equivalent to integration by a multilayer network, potentially endowing single neurons with substantial computational power. However, whether neurons can learn to harness dendritic properties to realize this potential is unknown. Here, we develop a learning rule from dendritic cable theory and use it to investigate the processing capacity of a detailed pyramidal neuron model. We show that computations using spatial or temporal features of synaptic input patterns can be learned, and even synergistically combined, to solve a canonical nonlinear feature-binding problem. The voltage dependence of the learning rule drives coactive synapses to engage dendritic nonlinearities, whereas spike-timing dependence shapes the time course of subthreshold potentials. Dendritic input-output relationships can therefore be flexibly tuned through synaptic plasticity, allowing optimal implementation of nonlinear functions by single neurons

    Microcircuit Rules Governing Impact of Single Interneurons on Purkinje Cell Output In Vivo

    Get PDF
    The functional impact of single interneurons on neuronal output in vivo and how interneurons are recruited by physiological activity patterns remain poorly understood. In the cerebellar cortex, molecular layer interneurons and their targets, Purkinje cells, receive excitatory inputs from granule cells and climbing fibers. Using dual patch-clamp recordings from interneurons and Purkinje cells in vivo, we probe the spatiotemporal interactions between these circuit elements. We show that single interneuron spikes can potently inhibit Purkinje cell output, depending on interneuron location. Climbing fiber input activates many interneurons via glutamate spillover but results in inhibition of those interneurons that inhibit the same Purkinje cell receiving the climbing fiber input, forming a disinhibitory motif. These interneuron circuits are engaged during sensory processing, creating diverse pathway-specific response functions. These findings demonstrate how the powerful effect of single interneurons on Purkinje cell output can be sculpted by various interneuron circuit motifs to diversify cerebellar computations

    Are Human Dendrites Different?

    Get PDF
    The first patch-clamp recordings from the dendrites of human neocortical neurons have recently been reported by Beaulieu-Laroche et al. and Gidon et al. These studies have shown that human dendrites are electrically excitable, exhibiting backpropagating action potentials and fast dendritic calcium spikes. This new frontier highlights the potential for interspecies differences in the biophysics of dendritic computation

    A Large Dataset to Train Convolutional Networks for Disparity, Optical Flow, and Scene Flow Estimation

    Full text link
    Recent work has shown that optical flow estimation can be formulated as a supervised learning task and can be successfully solved with convolutional networks. Training of the so-called FlowNet was enabled by a large synthetically generated dataset. The present paper extends the concept of optical flow estimation via convolutional networks to disparity and scene flow estimation. To this end, we propose three synthetic stereo video datasets with sufficient realism, variation, and size to successfully train large networks. Our datasets are the first large-scale datasets to enable training and evaluating scene flow methods. Besides the datasets, we present a convolutional network for real-time disparity estimation that provides state-of-the-art results. By combining a flow and disparity estimation network and training it jointly, we demonstrate the first scene flow estimation with a convolutional network.Comment: Includes supplementary materia

    Structured Connectivity in Cerebellar Inhibitory Networks

    Get PDF
    SummaryDefining the rules governing synaptic connectivity is key to formulating theories of neural circuit function. Interneurons can be connected by both electrical and chemical synapses, but the organization and interaction of these two complementary microcircuits is unknown. By recording from multiple molecular layer interneurons in the cerebellar cortex, we reveal specific, nonrandom connectivity patterns in both GABAergic chemical and electrical interneuron networks. Both networks contain clustered motifs and show specific overlap between them. Chemical connections exhibit a preference for transitive patterns, such as feedforward triplet motifs. This structured connectivity is supported by a characteristic spatial organization: transitivity of chemical connectivity is directed vertically in the sagittal plane, and electrical synapses appear strictly confined to the sagittal plane. The specific, highly structured connectivity rules suggest that these motifs are essential for the function of the cerebellar network

    Active dendrites enable strong but sparse inputs to determine orientation selectivity

    Get PDF
    The dendrites of neocortical pyramidal neurons are excitable. However, it is unknown how synaptic inputs engage nonlinear dendritic mechanisms during sensory processing in vivo, and how they in turn influence action potential output. Here, we provide a quantitative account of the relationship between synaptic inputs, nonlinear dendritic events, and action potential output. We developed a detailed pyramidal neuron model constrained by in vivo dendritic recordings. We drive this model with realistic input patterns constrained by sensory responses measured in vivo and connectivity measured in vitro. We show mechanistically that under realistic conditions, dendritic Na+ and NMDA spikes are the major determinants of neuronal output in vivo. We demonstrate that these dendritic spikes can be triggered by a surprisingly small number of strong synaptic inputs, in some cases even by single synapses. We predict that dendritic excitability allows the 1% strongest synaptic inputs of a neuron to control the tuning of its output. Active dendrites therefore allow smaller subcircuits consisting of only a few strongly connected neurons to achieve selectivity for specific sensory features.</jats:p
    corecore