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SUMMARY
As writing systems are a relatively novel invention (slightly over 5 kya),1 they could not have influenced the
evolution of our species. Instead, reading might recycle evolutionary older mechanisms that originally sup-
ported other tasks2,3 and preceded the emergence of written language. Accordingly, it has been shown
that baboons and pigeons can be trained to distinguish words from nonwords based on orthographic
regularities in letter co-occurrence.4,5 This suggests that part of what is usually considered reading-specific
processing could be performed by domain-general visual mechanisms. Here, we tested this hypothesis in
humans: if the reading system relies on domain-general visualmechanisms, some of the effects that are often
found with orthographic material should also be observable with non-orthographic visual stimuli. We per-
formed three experiments using the same exact design but with visual stimuli that progressively departed
from orthographic material. Subjects were passively familiarized with a set of composite visual items and
tested in an oddball paradigm for their ability to detect novel stimuli. Participants showed robust sensitivity
to the co-occurrence of features (‘‘bigram’’ coding) with strings of letter-like symbols but also with made-up
3D objects and sinusoidal gratings. This suggests that the processing mechanisms involved in the visual
recognition of novel words also support the recognition of other novel visual objects. These mechanisms
would allow the visual system to capture statistical regularities in the visual environment.6–9 We hope that
this work will inspire models of reading that, although addressing its unique aspects, place it within the
broader context of vision.
RESULTS

In this work, we propose that, if the human reading system relies

on domain-general visual mechanisms, effects that are often

found within the domain of visual word processing should also

be observable with non-orthographic visual stimuli. We tested

whether an effect typically studied in orthographic processing,

i.e., participants’ sensitivity to bigram frequencies, is also found

when the stimuli consist of sequences of pseudofonts or ar-

rangements of non-orthographic visual features. Bigrams have

been proposed to serve as an intermediate step between single

graphemes and words.10–12 Although the role of bigram fre-

quencies in reading is open to debate (see Chetail13 and

Schmalz andMulatti14 for two opposite views), fMRI15,16 and hu-

man intracranial recordings17 have shown that the left fusiform

gyrus is sensitive to this factor. Together with the aforemen-

tioned animal research literature, which manipulated bigram fre-

quencies as a variable of interest,4,5,18 this makes sensitivity to
bigram frequencies a suitable effect to be replicated with non-

orthographic visual stimuli.

Participants are sensitive to the bigram frequencies of
orthographic-like stimuli
Experiment 1 used words written using pseudofont as stimuli,

which, although resembling real letters, are completely unfamil-

iar to the participants. Concretely, we used the Brussels artificial

character set (BACS)19 (specifically BACS-2 serif; Figure 1A).

Although the use of novel words written with pseudofont is a

considerable simplification compared to real-life reading, it

also implies a number of important advantages. As pseudofonts

lack any connection to phonology or meaning, results only

depend on visual/orthographic processing. Furthermore, the

use of an unfamiliar script allowed us to avoid the influence of

participants’ particular history of exposure to orthographicmate-

rial. This approach has been widely and successfully used in the

field of psycholinguistics to study diverse aspects of reading
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Figure 1. Examples of representative stim-

ulus sets

(A) Three-character words used in experiment 1.

Character pairs making up high-pair-frequency

deviants are shared with standard words (here

marked in red for illustration purposes).

(B) Objects used in experiment 2. Each pair of

shapes composing high-pair-frequency deviant

objects was shared with a standard object.

(C) Circular gratings used in experiment 3. Each

pair of visual feature values (spatial frequency,

orientation, and contrast) defining high-pair-fre-

quency deviant gratings was shared with a stan-

dard grating.

See also Figure S1.
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(e.g., Chetail,13 Vidal et al.,19 Maurer et al.,20 and Taylor

et al.21,22).

A different subset of 9 BACS characters was randomly

selected to construct the stimuli for each participant. These

characters were used to build 6 three-character combinations

(e.g., ABC), which were used as standard words. Next, two

different deviant words were constructed. A ‘‘high-pair-fre-

quency’’ deviant was constructed using bigrams (pairs of char-

acters) that were present in the standard words. For example,

the deviant DEF is made up of the first bigram from the standard

wordDEGDEG, the second bigram from the standard word HEF,

and the open bigram10 from the standard word DIF. A ‘‘low-pair-

frequency deviant’’ was instead constructed using bigrams that

were never present in standard words. For example, the deviant

HIG is made of characters present in the aforementioned stan-

dard words, but in a unique combination. Therefore, all words

used the same characters, but although standard words and

high-pair-frequency deviants shared bigrams, low-pair-fre-

quency deviants did not.

Participants first completed a learning block in which only

standard stimuli were presented. They were instructed to pay

attention and try to learn them. After this, the experiment fol-

lowed a visual oddball design. Standard stimuli were presented

intermixed with deviants, and participants were asked to classify

them as either ‘‘correct’’ (standard) or ‘‘mistaken’’ (deviant).

Standard words were presented in 90% of the trials (15% each

token), and deviants were presented in 5% of the trials each.

This design allowed us to separately manipulate two variables.

On one hand, the frequency of occurrence of each individual

word (token frequency) was 15% for the standard stimuli and

5% for each deviant stimulus. On the other hand, the mean

pair frequency (mean of the frequency of occurrence of the

composing bigrams) of each word was high for standard stimuli

(5.27%) and high-pair-frequency deviants (6.66%) but low for

low-pair-frequency deviants (1.66%). This is because, although

high-pair-frequency deviants shared bigrams with standard

stimuli, the bigrams composing low-pair-frequency deviants

were unique to them.

Our task requested participants to distinguish words by

their token frequency; therefore, high- and low-pair-frequency

deviants should be equally rejected. However, if participants
2 Current Biology 31, 1–7, March 22, 2021
are sensitive to the frequency with which

pairs of characters appear together, the
detection of high-pair-frequency deviants should be harder.

We characterized participants’ performance by computing

their sensitivity index or d-prime (d’).23 All effect sizes reported

are Hedges’ g.24,25 Confidence intervals (CIs) reported between

square brackets are 95% CI.

While the mean d’ for the high-pair-frequency deviant was

0.84 [0.24, 1.45], it was 2.02 [1.44, 2.59] for the low-pair-fre-

quency deviant. Therefore, high-pair-frequency deviants were

harder to detect. The difference in d’ between deviants was

1.17 [0.60, 1.74] (t(21) = 4.30; p = 0.00016; g = 0.86 [0.36,

1.37]). This effect was present in the majority of the participants

(86.36% [65.09%, 97.09%] or 19 out of 22; one-sided binomial

test: p = 0.00043), which implies that the effect is highly reliable

(Figure 2A).

These results were replicated in an additional experiment, in

which the novel words presented to the participants were six

characters long (Figure S1). The effect found in this experi-

ment was of similar magnitude as the one reported in experi-

ment 1 (Table 1). This is particularly notable, because longer

words were presumably more difficult to learn as chunks,

and therefore, one would have expected participants to rely

more heavily on letter statistics. The fact that an effect of

equivalent magnitude emerges regardless of word length sug-

gests that bigram coding is not a strategic, task-specific ef-

fect; rather, it seems to be an intrinsic aspect of novel word

coding.

In brief, the detection of deviants that shared pairs of charac-

ters with the standard words resulted more challenging, which

implies that participants were sensitive to words’ bigram

frequencies.

Participants are sensitive to the co-occurrence of shape
features in visual objects
Experiment 2 had exactly the same design as the preceding

experiment, with the exception that the stimuli consisted now

of 2-dimensional renderings of 3-dimensional objects. These ob-

jects were composed by a central Y-shaped body and a distinc-

tive shape attached to each of three branches (similar to the

stimuli in Baker et al.29; Figure 1B). While the overall objects

play the role of words in experiment 1, the terminal shapes

play a role analogous to characters.



Figure 2. Participants are sensitive to the co-occurrence of visual features across different types of stimuli

On each graph, the x and y axes represent sensitivity (d’) to high-pair-frequency and low-pair-frequency deviants, respectively. While each dot represents a

participant, the colored dot represents the mean of the group. The shaded area around the mean denotes group level within participants 95% CI. Projected on

each axis, a colored dot indicates themean performance for the respective deviant, and the error bar represents 95%CI. Note that themajority of the participants

in all of the experiments lay above the diagonal.

(A) Experiment 1 (three-character word-like stimuli).

(B) Experiment 2 (visual objects).

(C) Experiment 3 (sinusoidal gratings).

See also Figure S1.
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These objects differed from written words in two ways. First,

rather than being formed by adjacent but independent graph-

emes, the parts conforming the objects were physically con-

nected. Second, the constituent parts followed a radial spatial

arrangement rather than the linear arrangement typical of ortho-

graphic material.

We selected 9 distinctive shapes, with which we constructed 6

standard objects and the same two different types of deviants

employed in experiment 1. The first of such deviant objects

was composed of pairs of shapes that were all present in the

standard objects (high-pair-frequency deviant). The second

deviant object was instead constructed with pairs of shapes

that were not present in any standard object (low-pair-frequency

deviant). Two different sets of images were created, and each

participant was exposed to one of them. An example stimulus

set can be seen in Figure 1B.

As in experiment 1, high-pair-frequency deviants were harder

to detect. The average d’ for the high-pair-frequency deviant was

0.65 [0.16, 1.15], and it was 1.58 [1.14, 2.03] for the low-pair-fre-

quency deviant. The difference in d’ between deviants was 0.93

[0.44, 1.43] (t(38) = 3.81; p = 0.00025; g = 0.64 [0.27, 1.01]). The

effect of interest was present in 74.36% [57.87%, 86.96%] of

the participants (29 out of 39; one-sided binomial test: p =

0.0017; Figure 2B).

These results show that an effect akin to sensitivity to bigram

frequencies can also be observed when participants are pre-

sentedwith novel visual stimuli that are clearly non-orthographic.
Participants are sensitive to the co-occurrence of low-
level visual features
These results of experiment 2 show that participants’ sensitivity

to bigram frequencies can be observed outside the domain of

orthographic processing. Yet the stimuli used were similar to

reading material insofar as higher-level units (words or objects)

were made up of lower-level parts (characters or shapes) ar-

ranged in space. Therefore, to test the generality of our findings,
we performed a third experiment, where the stimuli were instead

circular sinusoidal gratings defined by combinations of low-level

visual features. These features (which played the same role as

the characters in experiment 1) were spatial frequency, orienta-

tion, and contrast (Figure 1C).

In experiment 1, each of the 3 character positions defining a

word could be occupied by 1 out of 3 possible characters. In

the same way, each low-level visual feature defining the sinusoi-

dal gratings could take 3 different values. We used these values

to construct stimuli with a statistical structure in all identical to

that of experiment 1. For example, the high-pair-frequency

deviant in Figure 1C shares spatial frequency and contrast with

the top left standard, orientation and contrast with the middle

left standard, and spatial frequency and orientation with the bot-

tom left standard. So this deviant shares all its ‘‘bigrams’’ with

standard stimuli. Instead, the low-pair-frequency deviant is

defined by feature values in a unique combination. A different

shuffling of feature values was used for each participant.

In experiment 3, mean d’ was 1.01 [0.42, 1.60] for the high-

pair-frequency deviant and 2.22 [1.69, 2.74] for the low-pair-fre-

quency deviant. Once more, high-pair-frequency deviants were

harder to detect. The difference in d’ between deviants was

1.21 [0.61, 1.81] (t(34) = 4.12; p = 0.00011; g = 0.74 [0.33,

1.14]). The majority of the participants (82.86% [66.35%,

93.44%]; 29 out of 35; one-sided binomial test: p = 5.8e�05)

showed an effect in the direction of the hypothesis (Figure 2C).

These results show that a ‘‘bigram frequency’’ effect is even

present when the features that define the stimuli are non-

spatially segregated, low-level visual properties.
Participants’ sensitivity to feature co-occurrence
across stimuli types
We performed a Bayesian analysis to compare the magnitude

of the effects across experiments, which showed that partici-

pants’ performance was biased by the co-occurrence of fea-

tures to an equivalent extent, irrespective of the type of stimuli
Current Biology 31, 1–7, March 22, 2021 3



Table 1. Comparison of participants’ sensitivity to feature co-

occurrence across experiments

Comparison across stimuli types BF01 Hedges’ g

Three-character words versus

objects

4.21 0.16 [�0.36, 0.68]

Three-character words versus

sinusoidal gratings

4.89 �0.02 [�0.56, 0.51]

Objects versus sinusoidal gratings 4.43 �0.16 [�0.62, 0.29]

Six-character words versus objects 3.37 0.24 [�0.27, 0.76]

Six-character words versus

sinusoidal gratings

4.86 0.05 [�0.47, 0.58]

Three-character words versus

six-character words

4.31 �0.09 [�0.68, 0.49]

Because we were also interested in evidence for the null (i.e., the differ-

ence between high- and low-pair-frequency detection might not differ

across stimulus types), we performed a series of Bayesian indepen-

dent-samples tests (JZS Bayes factor),26–28 comparing the effect of inter-

est (i.e., d’ to low-pair-frequency deviant minus d’ to high-pair-frequency

deviant) across experiments. All comparisons across experiments

yielded BF01 values above 3, which implies substantial evidence in favor

of the null compared to the alternative hypothesis.

Table 2. Hit rates and false alarm rates in all experiments

Experiment

High P-F

deviant hits

Low P-F

deviant hits

Standard false

alarms

Three-character

words

0.47

[0.33, 0.62]

0.78

[0.68, 0.89]

0.23

[0.16, 0.30]

Objects 0.46

[0.35, 0.58]

0.70

[0.60, 0.81]

0.25

[0.20, 0.30]

Sinusoidal

gratings

0.45

[0.32, 0.58]

0.76

[0.66, 0.86]

0.17

[0.11, 0.22]

Six-character

words

0.40 [0.26, 0.53] 0.74

[0.66, 0.83]

0.26

[0.18, 0.33]

Hit rates and false alarm rates were comparable across experiments.
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used (Table 1; a summary of participants’ hit and false alarm

rates in all experiments can be found in Table 2). Despite

different mechanisms could in principle produce effects of

equivalent magnitude purely by chance, this evidence may sug-

gest that the data described here are the result of a unique,

domain-general visual mechanism.

DISCUSSION

Letter co-occurrence and models of visual word
identification
As we mentioned earlier, the role of bigram frequencies in

reading is at the center of a heated debate. Recently, Grainger30

proposed the coexistence of location-invariant and location-

specific coding as the marker of orthographic processing—bi-

gram and bigram frequencies were not considered as a defining

feature. Schmalz and Mulatti14 have reviewed and studied the

effect of bigram frequencies in reading times. Using Bayesian

analysis, the authors conclude that there is evidence against a

modulation of reading times by bigram frequencies. Chetail13

conducted instead a systematic revision covering 20 papers

on bigram frequency and arrived at the conclusion that sensi-

tivity to orthographic regularities, such as bigram frequencies,

may influence visual word recognition at all levels of processing.

It is worth mentioning that the putative bigram effect seems to

be easier to obtain in experiments using pseudowords or unfamil-

iar scripts that are novel to the participants (e.g., Chetail31 and Le-

lonkiewicz et al.32), even if it is not clear howmuch familiarity with a

novel alphabet/lexicon is required before this and other signs of

mature orthographic processing emerge.33 In experiment 1, we

provide new evidence in this line, showing that, when readers

are confronted with novel words written in an unfamiliar script,

they encode for the statistics of co-occurrence between letters

quite soon and capitalize on it to identify such words.

Several models of visual word identification propose that

orthographic processing builds on letter co-occurrence
4 Current Biology 31, 1–7, March 22, 2021
statistics. Seminal work on parallel distributed processing

models explicitly suggested that the nature of sublexical repre-

sentations depend on orthographic regularities.34 More recently,

models were proposed that suggest a hierarchy where higher-

order units are based on the statistics of co-occurrence between

lower-level units (e.g., Dehaene et al.11). Some of these models

have been implemented computationally35,36 and have proven

to account for several experimental findings in visual word iden-

tification. Some of these models explicitly commit to the exis-

tence of bigram representations11; this is obviously in line with

the results illustrated here, although we did not contrast different

coding schemes (e.g., edit distance; spatial coding),37 and there-

fore, we cannot speak in this respect. It is worth noting that high-

pair-frequency deviants shared bigrams with the standard

words/objects, which might have contributed, in addition to bi-

gram frequency, to make these kinds of stimuli more confusable.

Note, however, that, regardless of the coding scheme, our re-

sults unambiguously show that participants are sensitive to the

presence of orthographic regularities.

Visual ‘‘word’’ identification of non-orthographic stimuli
Although themodelsmentioned in the previous section success-

fully account for a number of experimental findings in the context

of reading, they share a common limitation. By dealing only with

orthographic stimuli, they do not place reading within the

broader context of visual perception. As a result, they consider

reading as domain specific (either explicitly or implicitly). In sharp

contrast, the results of our experiments 2 and 3 strongly suggest

that at least some of the mechanisms at play during visual word

identification are not specialized for reading.

The presence of an effect akin to sensitivity to bigrams’ fre-

quencies in the case of stimuli radically different from ortho-

graphic material implies that the mechanism at play might be

domain general. This is in agreement with the proposal that cul-

tural inventions, such as writing, recycle pre-existing domain-

general cognitive processes.2,3 Furthermore, our results suggest

that, in the case of reading, onemechanism that is recycled is the

visual system’s ability to extract statistical regularities in the co-

occurrence of lower-level visual features and integrate them into

higher-level multifeatural representations.

Our intention is not to claim that every aspect of visual word

identification is domain general. Certainly, some effects found

in the literature seem to reveal letters’ special status. For

example, transposed-letter strings (e.g., NDTF for NTDF) are
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considerably more confusable than strings of non-letters sym-

bols (e.g., %$&£ for %&$£);38 the accuracy profile in letter iden-

tification across different positions within strings is unique to let-

ters (e.g., Tydgat and Grainger39); and attention is preferably

deployed to the beginning of letter strings, but not to the begin-

ning of strings of other symbols (e.g., Scaltritti and Balota40). In

experiment 2, the shapes defining the novel objects were ar-

ranged radially, and the notion itself of spatial arrangement

cannot be applied at all to the sinusoidal gratings used in exper-

iment 3. Therefore, some of the above-mentioned letter-specific

effects, which require a linear spatial arrangement, are funda-

mentally not replicable with these stimuli. However, the exis-

tence of effects that are specific to orthographic material does

not justify the conception of visual word identification as purely

domain specific. A successful model of reading should account

for these letter-specific effects but consider the broader frame-

work of vision.

Word recognition in the bigger context of vision
Our results are in agreement with two major theoretical frame-

works in visual neuroscience. The first asserts that visual object

information is extracted along a largely feedforward hierarchy,

where tuning for progressively more-complex visual features is

built up incrementally.41 That is, units in a given layer of the hier-

archy integrate inputs from units of the previous layer, gaining

selectivity for the combination of features encoded by the input

neurons. For instance, inputs from simple edge detectors can

be combined to produce tuning for corners and curved

boundaries.

These ideas have been instantiated in a number of neural

network models, starting from Fukushima’s Neocognitron42

and Riesenhubber’s and Poggio’s HMAX model,43 to arrive to

modern deep convolutional neural networks.44 These models

not only achieve extraordinary accuracies at classifying visual

images but can also account for key trends in the tuning proper-

ties of ventral neurons in humans, monkeys, and rats,45–50 as

well as human and monkey performance in object recognition

tasks.51–56 Our findings are highly consistent with these models,

because they show how distinct visual features (no matter

whether characters, shapes, or low-level visual properties) are

hierarchically integrated into progressively more-complex com-

binations (e.g., bigrams or pairs of features) before being repre-

sented as full ‘‘objects.’’

Interestingly, in our experiments, such hierarchical feature

integration took place spontaneously, via exposure to the statis-

tics of the stimulus sets. This is in line with another important

theoretical principle that has been called into cause to explain

why visual neurons develop certain kinds of tuning properties.

This principle postulates that the tuning of sensory neurons is

determined by adaptation to the statistics of the signals they

need to encode.7,9,57 Starting from the pioneering intuitions of

Attneave and Barlow,58,59 such efficient coding principle has

been instantiated in a number of computational models that

are able to learn key properties of the visual system through un-

supervised exposure to the spatiotemporal regularities of the vi-

sual input.60–62

Solid causal evidence has been gathered to show that visual

neurons adaptively change their tuning depending on the statis-

tics of the visual stimuli they have been exposed to, both during
postnatal development63–65 and adult life.66,67 At the perceptual

level, human sensitivity to higher-order image statistics closely

matches the informational content of such statistics in natural

scenes,68,69 thus suggesting a developmental adaptation of vi-

sual perception to the regularities of the visual world.

Moreover, exposure to altered object statistics has been

shown to affect human performance in object-recognition

tasks,54,70,71 implying that unsupervised adaptation to visual

input statistics continuously sculpt visual perception, even in

adult life. Our findings add further behavioral evidence to this

conclusion by showing that enhanced sensitivity to specific pairs

of visual features emerges as a result of their mere frequency of

occurrence within a given stimulus set.

Final conclusions
The results presented in this work suggest that a fundamental

processing mechanism behind the processing of visual words

also supports the recognition of other visual objects. This implies

that such mechanism is indeed of general purpose and confirms

the view that reading builds on evolutionarily older cognitive

structures.2,3 This mechanism would enable the statistical

learning of regularities in the visual environment (e.g., Frost

et al.,6 Olshausen and Field,7 Saffran et al.,8 and Simoncelli

and Olshausen9). In this view, specialization for letter and letter

clusters would emerge in skilled readers via the heavy exposure

to written language that is characteristic of modern society (e.g.,

Perea et al.72,73). To conclude, we hope this work will help to

inspire models of reading that profit from the body of knowledge

amassed in the broader field of visual neuroscience.
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Psychophysics Toolbox v.3.0.14 74,75 http://psychtoolbox.org/
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32398-hhentschke-measures-of-effect-size-toolbox

Bayes Factors MATLAB functions Sam Schwarzkopf’s lab https://figshare.com/articles/Bayes_Factors_Matlab_

functions/1357917

Analysis scripts This paper https://osf.io/3tyeu/

Blender 2.79b Blender Foundation https://www.blender.org/

Other

Brussels Artificial Character Set (BACS) 19 https://osf.io/dj8qm/

Monitor LCD 27’’ BenQ XL2720Z
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Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Davide

Crepaldi (dcrepaldi@sissa.it, @CrepaldiDavide).

Materials availability
The stimuli used in experiments 1, S1, and 2 can be found at the following Open Science Framework (OSF) repository: https://osf.io/

3tyeu/

The stimuli used in experiment 3 were generated programmatically.

Data and code availability
The data from all experiments, as well as the code used to perform the statistical analysis can be found at https://osf.io/

3tyeu/.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Participants
All participants were self-reported right handed, Italian native speakers, and were recruited from the city of Trieste via on-line

advertisement. They all had normal or corrected-to-normal vision and no language-related impairments. Participants provided

informed consent and received a monetary compensation of 10V. The experiment was approved by SISSA’s Ethical

Committee.

Twenty-two participants (5 male and 17 female) took part in experiment 1 (mean age = 23.4, s = 2.21 years); 40 participants (12

male, 28 female) took part in experiment 2 (mean age = 24.22, s = 2.57 years) and 36 participants (8 male, 28 female) took part in

experiment 3 (mean age = 23.22, s = 3.37 years).

METHOD DETAILS

Procedure and experimental design
The 4 experiments presented in this work followed the same procedure and used the same experimental design, differing only in the

stimuli used. Participants sat in a sound-attenuated testing booth at around 70cm of a 27’’ computer monitor (BenQ XL2720Z). The
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experiments were programmed and run in MATLAB (2015b, MathWorks, Natick, MA, USA) using the Psychophysics Toolbox (v3)

extensions.74,75

As described in the Results section, participants first completed a learning block where 200 standard stimuli were presented.

During this block they were instructed to pay attention and try to learn the stimuli. Stimuli were presented one at a time and

remained on screen for 1.5 to 2 s. After the learning block, participants completed 6 testing blocks, where standard stimuli

were presented intermixed with deviant stimuli. On each of these blocks, participants were presented with 180 standard stim-

uli (90% of the trials; 15% each of the 6 standard tokens) and 20 deviant stimuli (10% percent of the trials; 5% each deviant

condition).

Stimuli order of presentation was pseudorandom. Each test block started with 12 standard stimuli, after which deviants were pre-

sented allowing 6 to 12 standard stimuli in between each deviant presentation. Stimuli repetitions were only allowed after 2 other

stimuli were presented (e.g., s2 s3 s1 s2).

Participants had amaximum of 2 s to classify each stimulus as either ‘‘Correct’’ (standard) or ‘‘Mistaken’’ (deviant) by pressing one

of two keys on a keyboard. Key mapping was counterbalanced across participants. In case of timeout, the next trial started without

any feedback. Participants were not informed about the amount and type of deviants. Overall, each participant was asked to classify

1080 instances of standard stimuli, and 60 instances of each deviant stimuli. Each block lasted on average 7 minutes and the entire

experiment had an approximated duration of 50 minutes.

Stimuli sets
The stimuli used in experiment 1 (and in the supplemental experiment reported in Figure S1) were words constructed using the

Brussels Artificial Character Set (BACS-2 serif19), whose characters have perimetric complexity, number of strokes, junctions

and terminations matched to the English alphabet. We picked 23 out of the 26 available characters in BACS-2 with serifs.

The three characters excluded were J, which in BACS-2 resembles a question mark; P, which is a vertical mirror flip image of

the BACS-2 character B; and W, which resembles closely the BACS-2 character V.

The stimuli used in experiment 2 were not orthographic. Instead, we used images of 3D objects created using the software Blender

(version 2.79b77). Two different sets of images with the same statistical structure were created, and each participant was exposed to

one of them. This had the goal of ruling out the possibility that the effects were driven by some idiosyncratic feature of a given set of

shapes.

Finally in experiment 3, the stimuli used were circular sinusoidal gratings defined by different values of three low level visual fea-

tures. These features were spatial frequency (.4, 0.8 and 1.6 cycles per degree of visual angle), contrast (20%, 60% and 100%) and

orientation (0, 45 and 90 degrees).

Note that in all experiments, although the high pair-frequency deviants shared 2 features with 3 of the standard stimuli, they shared

none with the other three. On the other hand, the low pair-frequency deviants shared 1 feature with each of the 6 standard stimuli.

Thus the average number of shared features between deviants and standard stimuli was 1 for both types of deviants. Furthermore for

each participant, stimuli were constructed using a different shuffling characters (experiment 1) and feature values (experiment 3), but

always respecting the same statistical structure. Similarly, in experiment 2, we constructed 2 different stimuli sets using different

combinations of shapes. These measures make it impossible to correctly classify stimuli based on single characters, shapes or

feature values, and extremely unlikely to be able to do it based on values of individual pixels.

The statistical structure of the stimuli sets was based on the one used in Endress and Mehler.78

QUANTIFICATION AND STATISTICAL ANALYSIS

Data and participants exclusion criteria
As we stated earlier, during the testing blocks participants had a time limit of 2 s to provide an answer. Trials in which participants did

not provide an answer were excluded from the analyses, and participants with more than 20%of such trials for any stimulus category

were excluded altogether.

In experiment 1, all participants provided enough trials in all conditions. Participants failed to provide an answer in 1.68% of the

standard trials, 2.88%of the high pair-frequency deviant trials and 2.58%of the low pair-frequency deviant trials. Overall participants

provided an answer in 98.21% of the trials. Two participants had to be excluded from the analysis in experiment S1. The remaining

participants failed to provide an answer in 3.25% of the standard trials, 3.55% of the high pair-frequency deviant trials and 3.7% of

the low pair-frequency deviant trials. Participants provided an answer in 96.71% of all trials. In experiment 2, one participant was

excluded from the analysis. The rest of the participants failed to provide an answer in 2.05% of the standard trials, 2.74% of the

high pair-frequency deviant trials and 2.65% of the low pair-frequency deviant trials. Of all trials, 97.88% were answered within

the time limit. Finally, one participant was excluded from the analysis in experiment 3. The remaining participants failed to provide

an answer in 1.42% of the standard trials, 1.76% of high pair-frequency deviant trials and 2%of the low pair-frequency deviant trials.

Participants provided an answer in 98.53% of all trials.

Measure of performance
To better characterize the participants’ ability to detect deviant stimuli, we resorted to Signal Detection Theory and computed an

independent sensitivity index (d-prime score or d’) for each deviant type and for each participant. This measure of performance takes
Current Biology 31, 1–7.e1–e3, March 22, 2021 e2
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into account possible response biases.23 Participants’ responses were classified as ‘‘hit’’ (deviant stimuli classified as ‘‘mistaken’’) or

‘‘false alarm’’ (standard stimuli classified as ‘‘mistaken’’). Next, for each deviant type, d’ was calculated as

d0 = ZðHitRateÞ­ZðFalseAlarmRateÞ
where Z(.) is the inverse of the cumulative standard normal distribution. This takes into consideration the overall bias toward a ‘‘cor-

rect’’ or a ‘‘mistaken’’ response. As this function does not output a finite value if either the hit rate or the false alarm rate are either 0 or

1, and considering the total amount of trials of each type, hit rate was capped between 1/60 and 59/60, and false alarm rate was

capped between 1/1080 and 1079/1080.

Statistical analysis
Statistical comparisons within each experiment were performed using paired-samples Student’s t test when comparing d’ scores

across deviants. Comparisons across experiments were performed using Bayesian independent samples tests (JZS Bayes Fac-

tor26–28). This test measures the relative evidence between the null and alternative hypotheses, allowing to assess evidence in favor

of the null. Tests were performed using a Cauchy prior with scale value of r = 1. The code for this analysis was written by Sam

Schwarzkopf.79

All effect sizes reported are Hedges’ g,24,25 which is more precise than Cohen’s d, as it applies a correction for small sample sizes.

Effect sizes were calculated using the Measures of Effect Size Toolbox.76 All confidence intervals reported between square brackets

are 95%CIs. In the case of Figure 2, as data is paired, the CI around the dot representing themean performance at the group level is a

within participants CI calculated using the normalization method proposed by Morey.80
e3 Current Biology 31, 1–7.e1–e3, March 22, 2021
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