859 research outputs found

    The Self-Organization of Speech Sounds

    Get PDF
    The speech code is a vehicle of language: it defines a set of forms used by a community to carry information. Such a code is necessary to support the linguistic interactions that allow humans to communicate. How then may a speech code be formed prior to the existence of linguistic interactions? Moreover, the human speech code is discrete and compositional, shared by all the individuals of a community but different across communities, and phoneme inventories are characterized by statistical regularities. How can a speech code with these properties form? We try to approach these questions in the paper, using the ``methodology of the artificial''. We build a society of artificial agents, and detail a mechanism that shows the formation of a discrete speech code without pre-supposing the existence of linguistic capacities or of coordinated interactions. The mechanism is based on a low-level model of sensory-motor interactions. We show that the integration of certain very simple and non language-specific neural devices leads to the formation of a speech code that has properties similar to the human speech code. This result relies on the self-organizing properties of a generic coupling between perception and production within agents, and on the interactions between agents. The artificial system helps us to develop better intuitions on how speech might have appeared, by showing how self-organization might have helped natural selection to find speech

    Intelligent Adaptive Curiosity: a source of Self-Development

    Get PDF
    This paper presents the mechanism of Intelligent Adaptive Curiosity. This is a drive which pushes the robot towards situations in which it maximizes its learning progress. It makes the robot focus on situations which are neither too predictable nor too unpredictable. This mechanism is a source of self-development for the robot: the complexity of its activity autonomously increases. Indeed, we show that it first spends time in situations which are easy to learn, then shifts progressively its attention to situations of increasing difficulty, avoiding situations in which nothing can be learnt

    From Holistic to Discrete Speech Sounds: The Blind Snow-Flake Maker Hypothesis

    Get PDF
    Sound is a medium used by humans to carry information. The existence of this kind of medium is a pre-requisite for language. It is organized into a code, called speech, which provides a repertoire of forms that is shared in each language community. This code is necessary to support the linguistic interactions that allow humans to communicate. How then may a speech code be formed prior to the existence of linguistic interactions? Moreover, the human speech code is characterized by several properties: speech is digital and compositional (vocalizations are made of units re-used systematically in other syllables); phoneme inventories have precise regularities as well as great diversity in human languages; all the speakers of a language community categorize sounds in the same manner, but each language has its own system of categorization, possibly very different from every other. How can a speech code with these properties form? These are the questions we will approach in the paper. We will study them using the method of the artificial. We will build a society of artificial agents, and study what mechanisms may provide answers. This will not prove directly what mechanisms were used for humans, but rather give ideas about what kind of mechanism may have been used. This allows us to shape the search space of possible answers, in particular by showing what is sufficient and what is not necessary. The mechanism we present is based on a low-level model of sensory-motor interactions. We show that the integration of certain very simple and non language-specific neural devices allows a population of agents to build a speech code that has the properties mentioned above. The originality is that it pre-supposes neither a functional pressure for communication, nor the ability to have coordinated social interactions (they do not play language or imitation games). It relies on the self-organizing properties of a generic coupling between perception and production both within agents, and on the interactions between agents

    The self-organization of combinatoriality and phonotactics in vocalization systems

    Get PDF
    This paper shows how a society of agents can self-organize a shared vocalization system that is discrete, combinatorial and has a form of primitive phonotactics, starting from holistic inarticulate vocalizations. The originality of the system is that: (1) it does not include any explicit pressure for communication; (2) agents do not possess capabilities of coordinated interactions, in particular they do not play language games; (3) agents possess no specific linguistic capacities; and (4) initially there exists no convention that agents can use. As a consequence, the system shows how a primitive speech code may bootstrap in the absence of a communication system between agents, i.e. before the appearance of language

    Discovering Communication

    Get PDF
    What kind of motivation drives child language development? This article presents a computational model and a robotic experiment to articulate the hypothesis that children discover communication as a result of exploring and playing with their environment. The considered robotic agent is intrinsically motivated towards situations in which it optimally progresses in learning. To experience optimal learning progress, it must avoid situations already familiar but also situations where nothing can be learnt. The robot is placed in an environment in which both communicating and non-communicating objects are present. As a consequence of its intrinsic motivation, the robot explores this environment in an organized manner focusing first on non-communicative activities and then discovering the learning potential of certain types of interactive behaviour. In this experiment, the agent ends up being interested by communication through vocal interactions without having a specific drive for communication

    From Analogue to Digital Vocalizations

    Get PDF
    Sound is a medium used by humans to carry information. The existence of this kind of medium is a pre-requisite for language. It is organized into a code, called speech, which provides a repertoire of forms that is shared in each language community. This code is necessary to support the linguistic interactions that allow humans to communicate. How then may a speech code be formed prior to the existence of linguistic interactions? Moreover, the human speech code is characterized by several properties: speech is digital and compositional (vocalizations are made of units re-used systematically in other syllables); phoneme inventories have precise regularities as well as great diversity in human languages; all the speakers of a language community categorize sounds in the same manner, but each language has its own system of categorization, possibly very different from every other. How can a speech code with these properties form? These are the questions we will approach in the paper. We will study them using the method of the artificial. We will build a society of artificial agents, and study what mechanisms may provide answers. This will not prove directly what mechanisms were used for humans, but rather give ideas about what kind of mechanism may have been used. This allows us to shape the search space of possible answers, in particular by showing what is sufficient and what is not necessary. The mechanism we present is based on a low-level model of sensory-motor interactions. We show that the integration of certain very simple and non language-specific neural devices allows a population of agents to build a speech code that has the properties mentioned above. The originality is that it pre-supposes neither a functional pressure for communication, nor the ability to have coordinated social interactions (they do not play language or imitation games). It relies on the self-organizing properties of a generic coupling between perception and production both within agents, and on the interactions between agents

    Computational and Robotic Models of Early Language Development: A Review

    Get PDF
    We review computational and robotics models of early language learning and development. We first explain why and how these models are used to understand better how children learn language. We argue that they provide concrete theories of language learning as a complex dynamic system, complementing traditional methods in psychology and linguistics. We review different modeling formalisms, grounded in techniques from machine learning and artificial intelligence such as Bayesian and neural network approaches. We then discuss their role in understanding several key mechanisms of language development: cross-situational statistical learning, embodiment, situated social interaction, intrinsically motivated learning, and cultural evolution. We conclude by discussing future challenges for research, including modeling of large-scale empirical data about language acquisition in real-world environments. Keywords: Early language learning, Computational and robotic models, machine learning, development, embodiment, social interaction, intrinsic motivation, self-organization, dynamical systems, complexity.Comment: to appear in International Handbook on Language Development, ed. J. Horst and J. von Koss Torkildsen, Routledg

    Progressive growing of self-organized hierarchical representations for exploration

    Get PDF
    Designing agent that can autonomously discover and learn a diversity of structures and skills in unknown changing environments is key for lifelong machine learning. A central challenge is how to learn incrementally representations in order to progressively build a map of the discovered structures and re-use it to further explore. To address this challenge, we identify and target several key functionalities. First, we aim to build lasting representations and avoid catastrophic forgetting throughout the exploration process. Secondly we aim to learn a diversity of representations allowing to discover a "diversity of diversity" of structures (and associated skills) in complex high-dimensional environments. Thirdly, we target representations that can structure the agent discoveries in a coarse-to-fine manner. Finally, we target the reuse of such representations to drive exploration toward an "interesting" type of diversity, for instance leveraging human guidance. Current approaches in state representation learning rely generally on monolithic architectures which do not enable all these functionalities. Therefore, we present a novel technique to progressively construct a Hierarchy of Observation Latent Models for Exploration Stratification, called HOLMES. This technique couples the use of a dynamic modular model architecture for representation learning with intrinsically-motivated goal exploration processes (IMGEPs). The paper shows results in the domain of automated discovery of diverse self-organized patterns, considering as testbed the experimental framework from Reinke et al. (2019)
    • …
    corecore