8,470 research outputs found

    A Network for Learning Kinematics with Application to Human Reaching Models

    Full text link
    A model for self-organization of the coordinate transformations required for spatial reaching is presented. During a motor babbling phase, a mapping from spatial coordinate directions to joint motion directions is learned. After learning, the model is able to produce straight-line spatial velocity trajectories with characteristic bell-shaped spatial velocity profiles, as observed in human reaches. Simulation results are presented for transverse plane reaching using a two degree-of-freedom arm.Office of Naval Research (N00014-92-J-1309

    Symbol Synchronization for SDR Using a Polyphase Filterbank Based on an FPGA

    Get PDF
    This paper is devoted to the proposal of a highly efficient symbol synchronization subsystem for Software Defined Radio. The proposed feedback phase-locked loop timing synchronizer is suitable for parallel implementation on an FPGA. The polyphase FIR filter simultaneously performs matched-filtering and arbitrary interpolation between acquired samples. Determination of the proper sampling instant is achieved by selecting a suitable polyphase filterbank using a derived index. This index is determined based on the output either the Zero-Crossing or Gardner Timing Error Detector. The paper will extensively focus on simulation of the proposed synchronization system. On the basis of this simulation, a complete, fully pipelined VHDL description model is created. This model is composed of a fully parallel polyphase filterbank based on distributed arithmetic, timing error detector and interpolation control block. Finally, RTL synthesis on an Altera Cyclone IV FPGA is presented and resource utilization in comparison with a conventional model is analyzed

    Artificial intelligence applications in space and SDI: A survey

    Get PDF
    The purpose of this paper is to survey existing and planned Artificial Intelligence (AI) applications to show that they are sufficiently advanced for 32 percent of all space applications and SDI (Space Defense Initiative) software to be AI-based software. To best define the needs that AI can fill in space and SDI programs, this paper enumerates primary areas of research and lists generic application areas. Current and planned NASA and military space projects in AI will be reviewed. This review will be largely in the selected area of expert systems. Finally, direct applications of AI to SDI will be treated. The conclusion covers the importance of AI to space and SDI applications, and conversely, their importance to AI

    SDI satellite autonomy using AI and Ada

    Get PDF
    The use of Artificial Intelligence (AI) and the programming language Ada to help a satellite recover from selected failures that could lead to mission failure are described. An unmanned satellite will have a separate AI subsystem running in parallel with the normal satellite subsystems. A satellite monitoring subsystem (SMS), under the control of a blackboard system, will continuously monitor selected satellite subsystems to become alert to any actual or potential problems. In the case of loss of communications with the earth or the home base, the satellite will go into a survival mode to reestablish communications with the earth. The use of an AI subsystem in this manner would have avoided the tragic loss of the two recent Soviet probes that were sent to investigate the planet Mars and its moons. The blackboard system works in conjunction with an SMS and a reconfiguration control subsystem (RCS). It can be shown to be an effective way for one central control subsystem to monitor and coordinate the activities and loads of many interacting subsystems that may or may not contain redundant and/or fault-tolerant elements. The blackboard system will be coded in Ada using tools such as the ABLE development system and the Ada Production system

    On Packing Colorings of Distance Graphs

    Full text link
    The {\em packing chromatic number} χρ(G)\chi_{\rho}(G) of a graph GG is the least integer kk for which there exists a mapping ff from V(G)V(G) to {1,2,,k}\{1,2,\ldots ,k\} such that any two vertices of color ii are at distance at least i+1i+1. This paper studies the packing chromatic number of infinite distance graphs G(Z,D)G(\mathbb{Z},D), i.e. graphs with the set Z\mathbb{Z} of integers as vertex set, with two distinct vertices i,jZi,j\in \mathbb{Z} being adjacent if and only if ijD|i-j|\in D. We present lower and upper bounds for χρ(G(Z,D))\chi_{\rho}(G(\mathbb{Z},D)), showing that for finite DD, the packing chromatic number is finite. Our main result concerns distance graphs with D={1,t}D=\{1,t\} for which we prove some upper bounds on their packing chromatic numbers, the smaller ones being for t447t\geq 447: χρ(G(Z,{1,t}))40\chi_{\rho}(G(\mathbb{Z},\{1,t\}))\leq 40 if tt is odd and χρ(G(Z,{1,t}))81\chi_{\rho}(G(\mathbb{Z},\{1,t\}))\leq 81 if tt is even
    corecore