154 research outputs found

    Plasticité de l'excitabilité des neurones de la région CA1 de rat

    No full text
    It has been previously shown in pyramidal neurons of CA1 that in addition to long term synaptic plasticity, tetanus protocols (HFS/LFS) of afferent input induced a synergic plasticity of integration of synaptic potentials. In this context, we have addressed the following questions: 1) are changes on dendritic integration associated to STDP? 2) what are the mechanisms of facilitation of integration expression observed after LTP? and 3) does synaptic activity also induce persistent changes in excitability of GABAergic interneurones?Our results show that the STDP rule defined for synaptic plasticity is also valid for plasticity of integration and perfectly describes the changes in the amplitude-slope relation of the EPSP observed in parallel. These changes are input specific and require NMDA receptor activation.Plasticity of integration involves modifications of voltage-gated ions channels present at the neuronal surface. A local dendritic, NMDAR-dependent reduction of Ih current is observed during the increase in integration associated to LTP. In the presence of pharmacological blockers of Ih, LTP is still induced but facilitation of integration is no more observed. Finally, an increase in integration similar to that observed after LTP is induced when h conductance is reduced in the dendrite by using the Fast Dynamic Clamp technique. Changes in neuronal excitability is not limited to pyramidal neurons and we show that an increase in intrinsic excitability, dependent upon type I mGluR activation, is also observed in some interneurons of CA1 after HFS. This increase in excitability probably maintains the balance between excitation and inhibition in the hippocampic network by facilitating the recruitment of interneurons after hyperactivity.Our results show that in addition to changes in synaptic efficacy, change in intrinsic plasticity participate to long-lasting storage processes and probably maintain neuronal activity in a physiological range.Il a été préalablement montré dans les neurones pyramidaux de CA1 qu'en plus d'une plasticité synaptique à long terme, les protocoles de tétanisation des afférences (HFS/LFS) induisent une plasticité synergique de l'intégration des messages synaptiques. Dans ce contexte, nous avons abordé les questions suivantes: 1) des changements d'intégration dendritiques sont-ils associés à la STDP ? 2) quels sont les mécanismes d'expression de la facilitation de l'intégration observée après la LTP ? et 3) dans quelle mesure l'activité synaptique induit des changements persistants de l'excitabilité des interneurones GABAergiques ?Nos résultats montrent que la règle préétablie de STDP pour la plasticité synaptique est aussi valide pour la plasticité de l'intégration et décrit aussi parfaitement les changements de la relation amplitude/pente des PPSE observés en parallèle. Ces changements sont spécifiques de la voie synaptique activée et nécessitent l'activation des récepteurs NMDA. La plasticité de l'intégration met en jeu une régulation des conductances voltage-dépendantes présentes à la surface neuronale. Une réduction locale dendritique, NMDAR-dépendante du courant Ih est observée lors de l'augmentation d'intégration associée à la LTP. En présence de bloqueurs pharmacologiques du courant Ih, la LTP est toujours présente mais la facilitation de l'intégration n'est plus observée. Finalement, une facilitation de l'intégration similaire à celle observée après induction de la LTP est induite quand la conductance h est réduite dans la dendrite par la technique de courant imposé dynamique en temps réel.Des changements de l'excitabilité neuronale ne sont pas restreints aux neurones pyramidaux et nous montrons qu'une augmentation de l'excitabilité intrinsèque, dépendante des récepteurs mGluR de type I est également observée dans certains interneurones GABAergiques de CA1 après une HFS. Cette augmentation d'excitabilité pourrait permettre de maintenir l‘équilibre entre excitation et inhibition au sein du réseau hippocampique en facilitant le recrutement des interneurones à la suite d'épisodes d'hyperactivité.Nos résultats montrent donc qu'en parallèle des modifications de l'efficacité synaptique, des modifications de l'excitabilité intrinsèque des neurones peuvent participer au processus de stockage de l'information et permettent également de maintenir l'activité neuronale à un niveau physiologique

    Enhanced Intrinsic Excitability in Basket Cells Maintains Excitatory-Inhibitory Balance in Hippocampal Circuits

    Get PDF
    SummaryThe dynamics of inhibitory circuits in the cortex is thought to rely mainly on synaptic modifications. We challenge this view by showing that hippocampal parvalbumin-positive basket cells (PV-BCs) of the CA1 region express long-term (>30 min) potentiation of intrinsic neuronal excitability (LTP-IEPV-BC) upon brief repetitive stimulation of the Schaffer collaterals. LTP-IEPV-BC is induced by synaptic activation of metabotropic glutamate receptor subtype 5 (mGluR5) and mediated by the downregulation of Kv1 channel activity. LTP-IEPV-BC promotes spiking activity at the gamma frequency (∼35 Hz) and facilitates recruitment of PV-BCs to balance synaptic and intrinsic excitation in pyramidal neurons. In conclusion, activity-dependent modulation of intrinsic neuronal excitability in PV-BCs maintains excitatory-inhibitory balance and thus plays a major role in the dynamics of hippocampal circuits

    Adaptive response of single and binary Pseudomonas aeruginosa and Escherichia coli biofilms to benzalkonium chloride

    Get PDF
    The main goal of this work was to examine whether the continuous exposure of single and binary P. aeruginosa and E. coli biofilms to sub-lethal benzalkonium chloride (BC) doses can induce adaptive response of bacteria. Biofilms were formed during 24 h and then put continuously in contact with BC for more 5 days. The six-day-old adapted biofilms were then submitted to BC challenge, characterized and inspected by SEM. Both single and binary adapted biofilms have clearly more biomass, polysaccharides and proteins and less activity even though the number of cells was identical. After BC treatment, adapted biofilms maintained their mass and activity. SEM examination revealed that those adapted biofilms had a slimier and denser matrix that became thicker after BC treatment. Continuous exposure of bacteria to antimicrobials can lead to development of biofilms encompassing more virulent and tolerant bacteria. This adaptive resistance can be the result of a phenotypic adaptation, a genetic acquired resistance or both. Instead of eradicating biofilms and kill microorganisms, the use of a disinfectant can, favour biofilm formation and tolerance. This must be a genuine concern as it can happen in clinical environments, where the use of antimicrobials is unavoidable.The financial support from IBB-CEB and Fundacao para a Ciencia e Tecnologia (FCT) and European Community fund FEDER, through Program COMPETE, in the ambit of the Project PTDC/SAUESA/64609/2006/FCOMP-010124-FEDER-00702 and Idalina Machado PhD Grant (SFRH/BD/31065/2006) and Susana Lopes PhD Grant (SFRH/BD/47613/2008) are gratefully acknowledged

    Bacteria-responsive multilayer coatings comprising polycationic nanospheres for bacteria biofilm prevention on urinary catheters

    Get PDF
    This work reports on the development of infection-preventive coatings on silicone urinary catheters that contain in their structure and release on demand antibacterial polycationic nanospheres. Polycationic aminocellulose conjugate was first sonochemically processed into nanospheres to improve its antibacterial potential compared to the bulk conjugate in solution (ACSol). Afterwards the processed aminocellulose nanospheres (ACNSs) were combined with the hyaluronic acid (HA) polyanion to build a layer-by-layer construct on silicone surfaces. Although the coating deposition was more effective when HA was coupled with ACSol than with ACNSs, the ACNSs-based coatings were thicker and displayed smoother surfaces due to the embedment of intact nanospheres. The antibacterial effect of the ACNSs multilayers was by 40 % higher compared to the ACSol coatings. This fact was further translated into more effective prevention of Pseudomonas aeruginosa biofilm formation. The coatings were stable in absence of bacteria, whereas their disassembling occurred gradually during incubation with Pseudomonas aeruginosa, and thus eradicate the biofilm upon release of antibacterial agents. Only 5 bilayers of HA/ACNSs were sufficient to prevent the biofilm formation, in contrast to the 10 bilayers of ACSol required to achieve the same effect. The antibiofilm efficiency of (HA/ACNSs)10 multilayer construct built on a Foley catheter was additionally validated under dynamic conditions using a model of catheterized bladder in which the biofilm was grown during seven days.M.M.F. acknowledges the support of the European Commissionunder the Marie Curie Intra-European Fellowship (IEF) Program (Grant Agreement ‘‘NanoQuench” FP7-331416)

    Synthesis and Biocidal Activity of Some Naphthalene-Based Cationic Surfactants

    Get PDF
    In this study, different cationic surfactants were prepared by reacting dodecyl bromide with tertiary amines to produce a series of quaternary ammonium salts that were converted subsequently to stannous and cobalt cationic complexes via complexing them with stannous (II) or cobalt (II) ions. Surface properties such as surface- and interfacial-tension, and the emulsifying power of these surfactants were investigated. The surface parameters including critical micelle concentration, maximum surface excess, minimum surface area, tension lowering efficiency and effectiveness were studied. The free energy of micellization and adsorption were calculated. Antimicrobial activity was determined via the inhibition zone diameter of the prepared compounds, which was measured against six strains of a representative group of microorganisms. The antimicrobial activity of some of the prepared surfactants against sulfate reducing bacteria was determined by the dilution method. FTIR spectra, elemental analysis and a H1 NMR spectrum were examined to confirm compound structure and purity. The results obtained indicate that these compounds have good surface properties and good biocidal effect on broad spectrum of micro organisms

    Transient and sustained bacterial adaptation following repeated sublethal exposure to microbicides and a novel human antimicrobial peptide

    Get PDF
    Microbicides (biocides) play an important role in the prevention and treatment of infections. While there is currently little evidence for in-use treatment failures attributable to acquired reductions in microbicide susceptibility, the susceptibility of some bacteria can be reduced by sublethal laboratory exposure to certain agents. In this investigation, a range of environmental bacterial isolates (11 genera, 18 species) were repeatedly exposed to four microbicides (cetrimide, chlorhexidine, polyhexamethylene biguanide [PHMB], and triclosan) and a cationic apolipoprotein E-derived antimicrobial peptide (apoEdpL-W) using a previously validated exposure system. Susceptibilities (MICs and minimum bactericidal concentrations [MBCs]) were determined before and after 10 passages (P10) in the presence of an antimicrobial and then after a further 10 passages without an antimicrobial to determine the stability of any adaptations. Bacteria exhibiting >4-fold increases in MBCs were further examined for alterations in biofilm-forming ability. Following microbicide exposure, ≥4-fold decreases in susceptibility (MIC or MBC) occurred for cetrimide (5/18 bacteria), apoEdpL-W (7/18), chlorhexidine (8/18), PHMB (8/18), and triclosan (11/18). Of the 34 ≥4-fold increases in the MICs, 15 were fully reversible, 13 were partially reversible, and 6 were nonreversible. Of the 26 ≥4-fold increases in the MBCs, 7 were fully reversible, 14 were partially reversible, and 5 were nonreversible. Significant decreases in biofilm formation in P10 strains occurred for apoEdpL-W (1/18 bacteria), chlorhexidine (1/18), and triclosan (2/18), while significant increases occurred for apoEdpL-W (1/18), triclosan (1/18), and chlorhexidine (2/18). These data indicate that the stability of induced changes in microbicide susceptibility varies but may be sustained for some combinations of a bacterium and a microbicide

    Disinhibition Mediates a Form of Hippocampal Long-Term Potentiation in Area CA1

    Get PDF
    The hippocampus plays a central role in memory formation in the mammalian brain. Its ability to encode information is thought to depend on the plasticity of synaptic connections between neurons. In the pyramidal neurons constituting the primary hippocampal output to the cortex, located in area CA1, firing of presynaptic CA3 pyramidal neurons produces monosynaptic excitatory postsynaptic potentials (EPSPs) followed rapidly by feedforward (disynaptic) inhibitory postsynaptic potentials (IPSPs). Long-term potentiation (LTP) of the monosynaptic glutamatergic inputs has become the leading model of synaptic plasticity, in part due to its dependence on NMDA receptors (NMDARs), required for spatial and temporal learning in intact animals. Using whole-cell recording in hippocampal slices from adult rats, we find that the efficacy of synaptic transmission from CA3 to CA1 can be enhanced without the induction of classic LTP at the glutamatergic inputs. Taking care not to directly stimulate inhibitory fibers, we show that the induction of GABAergic plasticity at feedforward inhibitory inputs results in the reduced shunting of excitatory currents, producing a long-term increase in the amplitude of Schaffer collateral-mediated postsynaptic potentials. Like classic LTP, disinhibition-mediated LTP requires NMDAR activation, suggesting a role in types of learning and memory attributed primarily to the former and raising the possibility of a previously unrecognized target for therapeutic intervention in disorders linked to memory deficits, as well as a potentially overlooked site of LTP expression in other areas of the brain

    Quantal Glutamate Release Is Essential for Reliable Neuronal Encodings in Cerebral Networks

    Get PDF
    Background: The neurons and synapses work coordinately to program the brain codes of controlling cognition and behaviors. Spike patterns at the presynaptic neurons regulate synaptic transmission. The quantitative regulations of synapse dynamics in spike encoding at the postsynaptic neurons remain unclear. Methodology/Principal Findings: With dual whole-cell recordings at synapse-paired cells in mouse cortical slices, we have investigated the regulation of synapse dynamics to neuronal spike encoding at cerebral circuits assembled by pyramidal neurons and GABAergic ones. Our studies at unitary synapses show that postsynaptic responses are constant over time, such as glutamate receptor-channel currents at GABAergic neurons and glutamate transport currents at astrocytes, indicating quantal glutamate release. In terms of its physiological impact, our results demonstrate that the signals integrated from quantal glutamatergic synapses drive spike encoding at GABAergic neurons reliably, which in turn precisely set spike encoding at pyramidal neurons through feedback inhibition. Conclusion/Significance: Our studies provide the evidences for the quantal glutamate release to drive the spike encodings precisely in cortical circuits, which may be essential for programming the reliable codes in the brain to manage wellorganize

    Spine Calcium Transients Induced by Synaptically-Evoked Action Potentials Can Predict Synapse Location and Establish Synaptic Democracy

    Get PDF
    CA1 pyramidal neurons receive hundreds of synaptic inputs at different distances from the soma. Distance-dependent synaptic scaling enables distal and proximal synapses to influence the somatic membrane equally, a phenomenon called “synaptic democracy”. How this is established is unclear. The backpropagating action potential (BAP) is hypothesised to provide distance-dependent information to synapses, allowing synaptic strengths to scale accordingly. Experimental measurements show that a BAP evoked by current injection at the soma causes calcium currents in the apical shaft whose amplitudes decay with distance from the soma. However, in vivo action potentials are not induced by somatic current injection but by synaptic inputs along the dendrites, which creates a different excitable state of the dendrites. Due to technical limitations, it is not possible to study experimentally whether distance information can also be provided by synaptically-evoked BAPs. Therefore we adapted a realistic morphological and electrophysiological model to measure BAP-induced voltage and calcium signals in spines after Schaffer collateral synapse stimulation. We show that peak calcium concentration is highly correlated with soma-synapse distance under a number of physiologically-realistic suprathreshold stimulation regimes and for a range of dendritic morphologies. Peak calcium levels also predicted the attenuation of the EPSP across the dendritic tree. Furthermore, we show that peak calcium can be used to set up a synaptic democracy in a homeostatic manner, whereby synapses regulate their synaptic strength on the basis of the difference between peak calcium and a uniform target value. We conclude that information derived from synaptically-generated BAPs can indicate synapse location and can subsequently be utilised to implement a synaptic democracy

    Astrocytes: orchestrating synaptic plasticity?

    Get PDF
    Synaptic plasticity is the capacity of a preexisting connection between two neurons to change in strength as a function of neural activity. Because synaptic plasticity is the major candidate mechanism for learning and memory, the elucidation of its constituting mechanisms is of crucial importance in many aspects of normal and pathological brain function. In particular, a prominent aspect that remains debated is how the plasticity mechanisms, that encompass a broad spectrum of temporal and spatial scales, come to play together in a concerted fashion. Here we review and discuss evidence that pinpoints to a possible non-neuronal, glial candidate for such orchestration: the regulation of synaptic plasticity by astrocytes.Comment: 63 pages, 4 figure
    corecore