831 research outputs found

    The calyx of Held

    Get PDF
    The calyx of Held is a large glutamatergic synapse in the mammalian auditory brainstem. By using brain slice preparations, direct patch-clamp recordings can be made from the nerve terminal and its postsynaptic target (principal neurons of the medial nucleus of the trapezoid body). Over the last decade, this preparation has been increasingly employed to investigate basic presynaptic mechanisms of transmission in the central nervous system. We review here the background to this preparation and summarise key findings concerning voltage-gated ion channels of the nerve terminal and the ionic mechanisms involved in exocytosis and modulation of transmitter release. The accessibility of this giant terminal has also permitted Ca2+-imaging and -uncaging studies combined with electrophysiological recording and capacitance measurements of exocytosis. Together, these studies convey the panopoly of presynaptic regulatory processes underlying the regulation of transmitter release, its modulatory control and short-term plasticity within one identified synaptic termina

    Probing the intracellular calcium sensitivity of transmitter release during synaptic facilitation

    Get PDF
    In nerve terminals, residual Ca2+ remaining from previous activity can cause facilitation of transmitter release by a mechanism that is still under debate. Here we show that the intracellular Ca2+ sensitivity of transmitter release at the calyx of Held is largely unchanged during facilitation, which leaves an increased microdomain Ca2+ signal as a possible mechanism for facilitation. We measured the Ca2+ dependencies of facilitation, as well as of transmitter release, to estimate the required increment in microdomain Ca2+. These measurements show that linear summation of residual and microdomain Ca2+ accounts for only 30% of the observed facilitation. However, a small degree of supra-linearity in the summation of intracellular Ca2+ signals, which might be caused by saturation of cytosolic Ca2+ buffer(s), is sufficient to explain facilitation at this CNS synapse

    An organotypic slice culture to study the formation of calyx of Held synapses in-vitro.

    Get PDF
    The calyx of Held, a large axo-somatic relay synapse containing hundreds of presynaptic active zones, is possibly the largest nerve terminal in the mammalian CNS. Studying its initial growth in-vitro might provide insights into the specification of synaptic connection size in the developing brain. However, attempts to maintain calyces of Held in organotypic cultures have not been fruitful in past studies. Here, we describe an organotypic slice culture method in which calyces of Held form in-vitro. We made coronal brainstem slices with an optimized slice angle using newborn mice in which calyces have not yet formed; the presynaptic bushy cells were genetically labeled using the Math5 promoter. After six to nine days of culturing, we readily observed large Math5-positive nerve terminals in the medial nucleus of the trapezoid body (MNTB), but not in the neighboring lateral superior olive nucleus (LSO). These calyx-like synapses expressed the Ca2+- sensor Synaptotagmin-2 (Syt-2) and the Ca2+ binding protein Parvalbumin (PV), two markers of developing calyces of Held in vivo. Application of the BMP inhibitor LDN-193189 significantly inhibited the growth of calyx synapses, demonstrating the feasibility of long-term pharmacological manipulation using this organotypic culture method. These experiments provide a method for organotypic culturing of calyces of Held, and show that the formation of calyx-like synapses onto MNTB neurons can be preserved in-vitro. Furthermore, our study adds pharmacological evidence for a role of BMP-signaling in the formation of large calyx of Held synapses

    Peptide model helices in lipid membranes: insertion, positioning, and lipid response on aggregation studied by X-ray scattering

    Get PDF
    Studying membrane active peptides or protein fragments within the lipid bilayer environment is particularly challenging in the case of synthetically modified, labeled, artificial, or recently discovered native structures. For such samples the localization and orientation of the molecular species or probe within the lipid bilayer environment is the focus of research prior to an evaluation of their dynamic or mechanistic behavior. X-ray scattering is a powerful method to study peptide/lipid interactions in the fluid, fully hydrated state of a lipid bilayer. For one, the lipid response can be revealed by observing membrane thickening and thinning as well as packing in the membrane plane; at the same time, the distinct positions of peptide moieties within lipid membranes can be elucidated at resolutions of up to several angstroms by applying heavy-atom labeling techniques. In this study, we describe a generally applicable X-ray scattering approach that provides robust and quantitative information about peptide insertion and localization as well as peptide/lipid interaction within highly oriented, hydrated multilamellar membrane stacks. To this end, we have studied an artificial, designed ÎČ-helical peptide motif in its homodimeric and hairpin variants adopting different states of oligomerization. These peptide lipid complexes were analyzed by grazing incidence diffraction (GID) to monitor changes in the lateral lipid packing and ordering. In addition, we have applied anomalous reflectivity using synchrotron radiation as well as in-house X-ray reflectivity in combination with iodine-labeling in order to determine the electron density distribution ρ(z) along the membrane normal (z axis), and thereby reveal the hydrophobic mismatch situation as well as the position of certain amino acid side chains within the lipid bilayer. In the case of multiple labeling, the latter technique is not only applicable to demonstrate the peptide’s reconstitution but also to generate evidence about the relative peptide orientation with respect to the lipid bilayer

    Molecular mechanisms governing Ca2+ regulation of evoked and spontaneous release

    Get PDF
    The relationship between transmitter release evoked by action potentials and spontaneous release has fascinated neuroscientists for half a century, and separate biological roles for spontaneous release are emerging. Nevertheless, separate functions for spontaneous and Ca2+-evoked release do not necessarily indicate different origins of these two manifestations of vesicular fusion. Here we review how Ca2+ regulates evoked and spontaneous release, emphasizing that Ca2+ can briefly increase vesicle fusion rates one-millionfold above spontaneous rates. This high dynamic range suggests that docked and readily releasable pool (RRP) vesicles might be protected against spontaneous release while also being immediately available for ultrafast Ca2+-evoked release. Molecular mechanisms for such release clamping of highly fusogenic RRP vesicles are increasingly investigated. Thus, we view spontaneous release as a consequence of the highly release-competent state of a standing pool of RRP vesicles, which is molecularly fine-tuned to control spontaneous release

    Synaptotagmin increases the dynamic range of synapses by driving Ca2+ - evoked release and by clamping a near-linear remaining Ca2+ sensor

    Get PDF
    Ca2+-evoked transmitter release shows a high dynamic range over spontaneous release. We investigated the role of the Ca2+ sensor protein, Synaptotagmin2 (Syt2), in both spontaneous and Ca2+-evoked release under direct control of presynaptic [Ca2+](i), using an in vivo rescue approach at the calyx of Held. Re-expression of Syt2 rescued the highly Ca2+ cooperative release and suppressed the elevated spontaneous release seen in Syt2 KO synapses. This latter release clamping function was partially mediated by the poly-lysine motif of the C2B domain. Using an aspartate mutation in the C2B domain (D364N) in which Ca2+ triggering was abolished but release clamping remained intact, we show that Syt2 strongly suppresses the action of another, near-linear Ca2+ sensor that mediates release over a wide range of [Ca2+](i). Thus, Syt2 increases the dynamic range of synapses by driving release with a high Ca2+ cooperativity, as well as by suppressing a remaining, near-linear Ca2+ sensor

    Robo3-Driven Axon Midline Crossing Conditions Functional Maturation of a Large Commissural Synapse

    Get PDF
    SummaryDuring the formation of neuronal circuits, axon pathfinding decisions specify the location of synapses on the correct brain side and in correct target areas. We investigated a possible link between axon midline crossing and the subsequent development of output synapses formed by these axons. Conditional knockout of Robo3 in the auditory system forced a large commissural synapse, the calyx of Held, to be exclusively formed on the wrong, ipsilateral side. Ipsilateral calyx of Held synapses showed strong transmission defects, with reduced and desynchronized transmitter release, fewer fast-releasable vesicles, and smaller and more variable presynaptic Ca2+ currents. Transmission defects were not observed in a downstream inhibitory synapse, and some defects persisted into adulthood. These results suggest that axon midline crossing conditions functional maturation of commissural synapses, thereby minimizing the impact of mislocalized synapses on information processing. This mechanism might be relevant to human disease caused by mutations in the ROBO3 gene

    A Synaptotagmin Isoform Switch during the Development of an Identified CNS Synapse

    Get PDF
    Various Synaptotagmin (Syt) isoform genes are found in mammals, but it is unknown whether Syts can function redundantly in a given nerve terminal, or whether isoforms can be switched during the development of a nerve terminal. Here, we investigated the possibility of a developmental Syt isoform switch using the calyx of Held as a model synapse. At mature calyx synapses, fast Ca2+-driven transmitter release depended entirely on Syt2, but the release phenotype of Syt2 knockout (KO) mice was weaker at immature calyces, and absent at pre-calyceal synapses early postnatally. Instead, conditional genetic inactivation shows that Syt1 mediates fast release at pre-calyceal synapses, as well as a fast release component resistant to Syt2 deletion in immature calyces. This demonstrates a developmental Syt1-Syt2 isoform switch at an identified synapse, a mechanism that could fine-tune the speed, reliability, and plasticity of transmitter release at fast releasing CNS synapses

    An Alien Divalent Ion Reveals a Major Role for Ca2+ Buffering in Controlling Slow Transmitter Release

    Get PDF
    Ca2+-dependent transmitter release occurs in a fast and in a slow phase, but the differential roles of Ca2+ buffers and Ca2+ sensors in shaping release kinetics are still controversial. Replacing extracellular Ca2+ by Sr2+ causes decreased fast release but enhanced slow release at many synapses. Here, we established presynaptic Sr2+ uncaging and made quantitative Sr2+ - and Ca2+ -imaging experiments at the mouse calyx of Held synapse, to reveal the interplay between Ca2+ sensors and Ca2+ buffers in the control of fast and slow release. We show that Sr2+ activates the fast, Synaptotagmin-2 (Syt2) sensor for vesicle fusion with sixfold lower affinity but unchanged high cooperativity. Surprisingly, Sr2+ also activates the slow sensor that remains in Syt2 knock-out synapses with a lower efficiency, and Sr2+ was less efficient than Ca2+ in the limit of low concentrations in wild-type synapses. Quantitative imaging experiments show that the buffering capacity of the nerve terminal is markedly lower for Sr2+ than for Ca2+ (similar to 5-fold). This, together with an enhanced Sr2+ permeation through presynaptic Ca2+ channels (similar to 2-fold), admits a drastically higher spatially averaged Sr2+ transient compared with Ca2+. Together, despite the lower affinity of Sr2+ at the fast and slow sensors, the massively higher amplitudes of spatially averaged Sr2+ transients explain the enhanced late release. This also allows us to conclude that Ca2+ buffering normally controls late release and prevents the activation of the fast release sensor by residual Ca2+

    Phorbol esters modulate spontaneous and Ca2+-evoked transmitter release via acting on both munc13 and protein kinase C

    Get PDF
    Diacylglycerol (DAG) and phorbol esters strongly potentiate transmitter release at synapses by activating protein kinase C (PKC) and members of the Munc13 family of presynaptic vesicle priming proteins. This PKC/Munc13 pathway has emerged as a crucial regulator of release probability during various forms of activity-dependent enhancement of release. Here, we investigated the relative roles of PKC and Munc13-1 in the phorbol ester potentiation of evoked and spontaneous transmitter release at the calyx of Held synapse. The phorbol ester phorbol 12,13-dibutyrate (1 mu M) potentiated the frequency of miniature EPSCs, and the amplitudes of evoked EPSCs with a similar time course. Preincubating slices with the PKC blocker Ro31-82200 reduced the potentiation, mainly by affecting a late phase of the phorbol ester potentiation. The Ro31-8220-insensitive potentiation was most likely mediated by Munc13-1, because in organotypic slices of Munc13-1H567K knock-in mice, in which DAG binding to Munc13-1 is abolished, the potentiation of spontaneous release by phorbol ester was strongly suppressed. Using direct presynaptic depolarizations in paired recordings, we show that the phorbol ester potentiation does not go along with an increase in the number of readily releasable vesicles, despite an increase in the cumulative EPSC amplitude during 100 Hz stimulation trains. Our data indicate that activation of Munc13 and PKC both contribute to an enhancement of the fusion probability of readily releasable vesicles. Thus, docked and readily releasable vesicles are a substrate for modulation via intracellular second-messenger pathways that act via Munc13 and PKC
    • 

    corecore