66 research outputs found

    Expression of a retinoic acid signature in circulating CD34 cells from coronary artery disease patients

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Circulating CD34+ progenitor cells have the potential to differentiate into a variety of cells, including endothelial cells. Knowledge is still scarce about the transcriptional programs used by CD34+ cells from peripheral blood, and how these are affected in coronary artery disease (CAD) patients.</p> <p>Results</p> <p>We performed a whole genome transcriptome analysis of CD34+ cells, CD4+ T cells, CD14+ monocytes, and macrophages from 12 patients with CAD and 11 matched controls. CD34+ cells, compared to other mononuclear cells from the same individuals, showed high levels of KRAB box transcription factors, known to be involved in gene silencing. This correlated with high expression levels in CD34+ cells for the progenitor markers HOXA5 and HOXA9, which are known to control expression of KRAB factor genes. The comparison of expression profiles of CD34+ cells from CAD patients and controls revealed a less naïve phenotype in patients' CD34+ cells, with increased expression of genes from the Mitogen Activated Kinase network and a lowered expression of a panel of histone genes, reaching levels comparable to that in more differentiated circulating cells. Furthermore, we observed a reduced expression of several genes involved in CXCR4-signaling and migration to SDF1/CXCL12.</p> <p>Conclusions</p> <p>The altered gene expression profile of CD34+ cells in CAD patients was related to activation/differentiation by a retinoic acid-induced differentiation program. These results suggest that circulating CD34+ cells in CAD patients are programmed by retinoic acid, leading to a reduced capacity to migrate to ischemic tissues.</p

    The Role of Extramembranous Cytoplasmic Termini in Assembly and Stability of the Tetrameric K+-Channel KcsA

    Get PDF
    Membrane-active alcohol 2,2,2-trifluoroethanol has been proven to be an attractive tool in the investigation of the intrinsic stability of integral membrane protein complexes by taking K+-channel KcsA as a suitable and representative ion channel. In the present study, the roles of both cytoplasmic N and C termini in channel assembly and stability of KcsA were determined. The N terminus (1–18 residues) slightly increased tetramer stability via electrostatic interactions in the presence of 30 mol.% acidic phosphatidylglycerol (PG) in phosphatidylcholine lipid bilayer. Furthermore, the N terminus was found to be potentially required for efficient channel (re)assembly. In contrast, truncation of the C terminus (125–160 residues) greatly facilitated channel reversibility from either a partially or a completely unfolded state, and this domain was substantially involved in stabilizing the tetramer in either the presence or absence of PG in lipid bilayer. These studies provide new insights into how extramembranous parts play their crucial roles in the assembly and stability of integral membrane protein complexes

    Do Small Headgroups of Phosphatidylethanolamine and Phosphatidic Acid Lead to a Similar Folding Pattern of the K+ Channel?

    Get PDF
    Phospholipid headgroups act as major determinants in proper folding of oligomeric membrane proteins. The K+-channel KcsA is the most popular model protein among these complexes. The presence of zwitterionic nonbilayer lipid phosphatidylethanolamine (PE) is crucial for efficient tetramerization and stabilization of KcsA in a lipid bilayer. In this study, the influence of PE on KcsA folding properties was analyzed by tryptophan fluorescence and acrylamide quenching experiments and compared with the effect of anionic phosphatidic acid (PA). The preliminary studies suggest that the small size and hydrogen bonding capability of the PE headgroup influences KcsA folding via a mechanism quite similar to that observed for anionic PA

    Liver X receptors are required for thymic resilience and T cell output

    Get PDF
    The thymus is a primary lymphoid organ necessary for optimal T cell development. Here, we show that liver X receptors (LXRs)-a class of nuclear receptors and transcription factors with diverse functions in metabolism and immunity-critically contribute to thymic integrity and function. LXRαβ-deficient mice develop a fatty, rapidly involuting thymus and acquire a shrunken and prematurely immunoinhibitory peripheral T cell repertoire. LXRαβ's functions are cell specific, and the resulting phenotypes are mutually independent. Although thymic macrophages require LXRαβ for cholesterol efflux, thymic epithelial cells (TECs) use LXRαβ for self-renewal and thymocytes for negative selection. Consequently, TEC-derived LXRαβ protects against homeostatic premature involution and orchestrates thymic regeneration following stress, while thymocyte-derived LXRαβ limits cell disposal during negative selection and confers heightened sensitivity to experimental autoimmune encephalomyelitis. These results identify three distinct but complementary mechanisms by which LXRαβ governs T lymphocyte education and illuminate LXRαβ's indispensable roles in adaptive immunity

    Genome-wide meta-analysis of 241,258 adults accounting for smoking behaviour identifies novel loci for obesity traits

    Get PDF
    Few genome-wide association studies (GWAS) account for environmental exposures, like smoking, potentially impacting the overall trait variance when investigating the genetic contribution to obesity-related traits. Here, we use GWAS data from 51,080 current smokers and 190,178 nonsmokers (87% European descent) to identify loci influencing BMI and central adiposity, measured as waist circumference and waist-to-hip ratio both adjusted for BMI. We identify 23 novel genetic loci, and 9 loci with convincing evidence of gene-smoking interaction (GxSMK) on obesity-related traits. We show consistent direction of effect for all identified loci and significance for 18 novel and for 5 interaction loci in an independent study sample. These loci highlight novel biological functions, including response to oxidative stress, addictive behaviour, and regulatory functions emphasizing the importance of accounting for environment in genetic analyses. Our results suggest that tobacco smoking may alter the genetic susceptibility to overall adiposity and body fat distribution.Peer reviewe

    Genetic associations at 53 loci highlight cell types and biological pathways relevant for kidney function.

    Get PDF
    Reduced glomerular filtration rate defines chronic kidney disease and is associated with cardiovascular and all-cause mortality. We conducted a meta-analysis of genome-wide association studies for estimated glomerular filtration rate (eGFR), combining data across 133,413 individuals with replication in up to 42,166 individuals. We identify 24 new and confirm 29 previously identified loci. Of these 53 loci, 19 associate with eGFR among individuals with diabetes. Using bioinformatics, we show that identified genes at eGFR loci are enriched for expression in kidney tissues and in pathways relevant for kidney development and transmembrane transporter activity, kidney structure, and regulation of glucose metabolism. Chromatin state mapping and DNase I hypersensitivity analyses across adult tissues demonstrate preferential mapping of associated variants to regulatory regions in kidney but not extra-renal tissues. These findings suggest that genetic determinants of eGFR are mediated largely through direct effects within the kidney and highlight important cell types and biological pathways

    Targeting angiogenesis to restore the microcirculation after reperfused MI

    No full text
    Since early reperfusion therapy for patients with acute myocardial infarction (AMI) was demonstrated to decrease mortality, numerous improvements in AMI management have focused on prompt reperfusion of the epicardial coronary arteries. However, in a substantial group of patients with AMI, reperfusion of the myocardial tissue is hindered by dysfunction of the microvasculature, despite successful restoration of the epicardial coronary flow. These patients have prolonged ischemia and an adverse clinical outcome. Although several studies investigating the etiology of microvascular dysfunction have been performed, little is known about the restoration process of microvascular dysfunction after reperfused AMI. The objective of this review is to summarize our knowledge on natural restoration of the microvasculature after reperfused AMI, particularly with regard to angiogenesis, discuss diagnostic modalities used to identify patients with microvascular dysfunction and highlight the potential of pharmacological and cellular interventions to stimulate the recovery of the microvasculature by promoting angiogenesi
    corecore