12 research outputs found

    Spatial and temporal modulation of cell instructive cues in a filamentous supramolecular biomaterial

    Get PDF
    Supramolecular materials provide unique opportunities to mimic both the structure and mechanics of the biopolymer networks that compose the extracellular matrix. However, strategies to modify their filamentous structures in space and time in 3D cell culture to study cell behavior as encountered in development and disease are lacking. We herein disclose a multicomponent squaramide-based supramolecular material whose mechanics and bioactivity can be controlled by light through co-assembly of a 1,2-dithiolane (DT) monomer that forms disulfide cross-links. Remarkably, increases in storage modulus from ∼200 Pa to >10 kPa after stepwise photo-cross-linking can be realized without an initiator while retaining colorlessness and clarity. Moreover, viscoelasticity and plasticity of the supramolecular networks decrease upon photo-irradiation, reducing cellular protrusion formation and motility when performed at the onset of cell culture. When applied during 3D cell culture, force-mediated manipulation is impeded and cells move primarily along earlier formed channels in the materials. Additionally, we show photopatterning of peptide cues in 3D using either a photomask or direct laser writing. We demonstrate that these squaramide-based filamentous materials can be applied to the development of synthetic and biomimetic 3D in vitro cell and disease models, where their secondary cross-linking enables mechanical heterogeneity and shaping at multiple length scales

    Global maps of soil temperature

    Get PDF
    Research in global change ecology relies heavily on global climatic grids derived from estimates of air temperature in open areas at around 2 m above the ground. These climatic grids do not reflect conditions below vegetation canopies and near the ground surface, where critical ecosystem functions occur and most terrestrial species reside. Here, we provide global maps of soil temperature and bioclimatic variables at a 1-km² resolution for 0–5 and 5–15 cm soil depth. These maps were created by calculating the difference (i.e., offset) between in-situ soil temperature measurements, based on time series from over 1200 1-km² pixels (summarized from 8500 unique temperature sensors) across all the world’s major terrestrial biomes, and coarse-grained air temperature estimates from ERA5-Land (an atmospheric reanalysis by the European Centre for Medium-Range Weather Forecasts). We show that mean annual soil temperature differs markedly from the corresponding gridded air temperature, by up to 10°C (mean = 3.0 ± 2.1°C), with substantial variation across biomes and seasons. Over the year, soils in cold and/or dry biomes are substantially warmer (+3.6 ± 2.3°C) than gridded air temperature, whereas soils in warm and humid environments are on average slightly cooler (-0.7 ± 2.3°C). The observed substantial and biome-specific offsets emphasize that the projected impacts of climate and climate change on near-surface biodiversity and ecosystem functioning are inaccurately assessed when air rather than soil temperature is used, especially in cold environments. The global soil-related bioclimatic variables provided here are an important step forward for any application in ecology and related disciplines. Nevertheless, we highlight the need to fill remaining geographic gaps by collecting more in-situ measurements of microclimate conditions to further enhance the spatiotemporal resolution of global soil temperature products for ecological applications

    Global maps of soil temperature.

    Get PDF
    Research in global change ecology relies heavily on global climatic grids derived from estimates of air temperature in open areas at around 2 m above the ground. These climatic grids do not reflect conditions below vegetation canopies and near the ground surface, where critical ecosystem functions occur and most terrestrial species reside. Here, we provide global maps of soil temperature and bioclimatic variables at a 1-km2 resolution for 0-5 and 5-15 cm soil depth. These maps were created by calculating the difference (i.e. offset) between in situ soil temperature measurements, based on time series from over 1200 1-km2 pixels (summarized from 8519 unique temperature sensors) across all the world's major terrestrial biomes, and coarse-grained air temperature estimates from ERA5-Land (an atmospheric reanalysis by the European Centre for Medium-Range Weather Forecasts). We show that mean annual soil temperature differs markedly from the corresponding gridded air temperature, by up to 10°C (mean = 3.0 ± 2.1°C), with substantial variation across biomes and seasons. Over the year, soils in cold and/or dry biomes are substantially warmer (+3.6 ± 2.3°C) than gridded air temperature, whereas soils in warm and humid environments are on average slightly cooler (-0.7 ± 2.3°C). The observed substantial and biome-specific offsets emphasize that the projected impacts of climate and climate change on near-surface biodiversity and ecosystem functioning are inaccurately assessed when air rather than soil temperature is used, especially in cold environments. The global soil-related bioclimatic variables provided here are an important step forward for any application in ecology and related disciplines. Nevertheless, we highlight the need to fill remaining geographic gaps by collecting more in situ measurements of microclimate conditions to further enhance the spatiotemporal resolution of global soil temperature products for ecological applications

    Klemtoonbeheersing bij Dyslexie

    No full text
    In dit onderzoek is gekeken naar klemtoonbeheersing bij dyslexie. De centrale vraag hierbij was of er een verschil is in klemtoonbeheersing tussen dyslectische en niet dyslectische kinderen. Het doel was meer te weten te komen over de fonologisch tekort hypothese. Deze hypothese stelt kort gezegd dat dyslexie het resultaat is van, of in ieder geval verwant is aan een algemeen fonologisch probleem. Indien dit zo is, zou dus ook de klemtoonbeheersing (een onderdeel van de fonologie) aangetast moeten zijn bij dyslectici. Dit werd getest door middel van een klemtoonproductie- en klemtoonperceptietest bij kinderen van 8 à 9 jaar oud. Helaas werden hierbij weinig significante verschillen gevonden waardoor er moeilijk conclusies aan de resultaten verbonden kunnen worden. Wel leek er sprake van een lichte trend waarbij de dyslectische kinderen net iets minder goed scoorden dan de controlegroep. Bovendien werd er bij de dyslectici een verband geconstateerd tussen de scores van de productietest en het leesniveau. Bij de controlegroep bleek dit niet het geval

    Spatial and Temporal Modulation of Cell Instructive Cues in a Filamentous Supramolecular Biomaterial

    No full text
    Supramolecular materials provide unique opportunities to mimic both the structure and mechanics of the biopolymer networks that compose the extracellular matrix. However, strategies to modify their filamentous structures in space and time in 3D cell culture to study cell behavior as encountered in development and disease are lacking. We herein disclose a multicomponent squaramide-based supramolecular material whose mechanics and bioactivity can be controlled by light through co-assembly of a 1,2-dithiolane (DT) monomer that forms disulfide cross-links. Remarkably, increases in storage modulus from ∼200 Pa to >10 kPa after stepwise photo-cross-linking can be realized without an initiator while retaining colorlessness and clarity. Moreover, viscoelasticity and plasticity of the supramolecular networks decrease upon photo-irradiation, reducing cellular protrusion formation and motility when performed at the onset of cell culture. When applied during 3D cell culture, force-mediated manipulation is impeded and cells move primarily along earlier formed channels in the materials. Additionally, we show photopatterning of peptide cues in 3D using either a photomask or direct laser writing. We demonstrate that these squaramide-based filamentous materials can be applied to the development of synthetic and biomimetic 3D in vitro cell and disease models, where their secondary cross-linking enables mechanical heterogeneity and shaping at multiple length scales

    Anti-Tumor Necrosis Factor With a Glyco-Engineered Fc-Region Has Increased Efficacy in Mice With Colitis

    No full text
    Although tumor necrosis factor (TNF) antagonists reduce many clinical features of inflammatory bowel disease, complete mucosal healing occurs in fewer than 50% of patients. The Fc-region of monoclonal antibodies against TNF has immunosuppressive properties via effects on macrophage polarization. We examined the interaction between the anti-TNF Fc-region and Fcγ receptors (FcγR), and whether the absence of the Fc core fucose (which increases binding to FcγRIIIa) increases the efficacy of anti-TNF in mice with colitis. We generated Rag1-/- mice that lack all activating FcγRs (FcγRI, FcγRIII, and FcγRIV; called FcγR-/-Rag1-/- mice). We produced hypo-fucosylated antibodies against mouse and human TNF (adalimumab). Colitis was induced in mice by transfer of CD4+CD45RBhi to FcγR-/-Rag1-/- or Rag1-/- littermates; mice were given different antibodies against TNF or isotype (control) antibodies and disease activity index scores were determined. Colon tissues were collected and analyzed by histology. Human peripheral blood mononuclear cells (PBMCs) were isolated from blood of healthy donors. T-cell proliferation and proportions of CD206+ (immune regulatory) macrophages were measured in mixed lymphocyte reactions. Human PBMCs were genotyped for FCGR3A158 (the FcγRIIIa-158F allotype displays a lower Fc binding affinity) using the TaqMan single nucleotide polymorphism genotype assay. Rag1-/- mice with colitis given anti-TNF had near complete mucosal healing and Rag1-/- mice given an isotype control antibody developed severe colitis. In contrast, FcγR-/-Rag1-/- mice were refractory to the effects of anti-TNF: their histological colitis scores were as severe as those from FcγR-/-Rag1-/- mice given a control antibody. Colons from Rag1-/- mice that received anti-TNF had an increased number of CD206+ macrophages compared with Rag1-/- mice given control antibody; in FcγR-/-Rag1-/- mice given anti-TNF these numbers were as low as FcγR-/-Rag1-/- given the control antibody. In human PBMCs, anti-TNF increased the number of CD206+ macrophages: this required expression of FcγRIIIa; numbers of these cells were reduced in PBMCs with the low-affinity FcγRIIIa-158F genotype. A hypo-fucosylated form of adalimumab bound human FcγRIIIa with a higher affinity than control adalimumab. When hypo-fucosylated adalimumab was added to PBMCs, a larger number of CD206+ macrophages formed and T-cell proliferation was reduced, compared with addition of a control adalimumab. Hypo-fucosylated adalimumab increased the number of CD206+ macrophages in PMBCs that expressed the low-affinity FcγRIIIa. In mice with colitis, hypo-fucosylated anti-TNF significantly increased the number of CD206+ macrophages in the colon compared with control anti-TNF and was more effective in reducing colitis severity as measured by histology. In a study of the in vitro and in vivo mechanisms of anti-TNF, we found FcγR engagement by anti-TNF to be required for reduction of colitis in mice and development of CD206+ macrophages. A hypo-fucosylated form of anti-TNF binds FcγRIIIa with higher affinity and induces development of CD206+ macrophages in human PBMCs, especially PBMCs that express low-affinity FcγRIIIa. Hypo-fucosylated anti-TNF might be more effective in patients with inflammatory bowel diseas

    SoilTemp : a global database of near\u2010surface temperature

    No full text

    Effects of climate and atmospheric nitrogen deposition on early to mid-term stage litter decomposition across biomes

    Get PDF
    International audienceLitter decomposition is a key process for carbon and nutrient cycling in terrestrial ecosystems and is mainly controlled by environmental conditions, substrate quantity and quality as well as microbial community abundance and composition. In particular, the effects of climate and atmospheric nitrogen (N) deposition on litter decomposition and its temporal dynamics are of significant importance, since their effects might change over the course of the decomposition process. Within the TeaComposition initiative, we incubated Green and Rooibos teas at 524 sites across nine biomes. We assessed how macroclimate and atmospheric inorganic N deposition under current and predicted scenarios (RCP 2.6, RCP 8.5) might affect litter mass loss measured after 3 and 12 months. Our study shows that the early to mid-term mass loss at the global scale was affected predominantly by litter quality (explaining 73% and 62% of the total variance after 3 and 12 months, respectively) followed by climate and N deposition. The effects of climate were not litter-specific and became increasingly significant as decomposition progressed, with MAP explaining 2% and MAT 4% of the variation after 12 months of incubation. The effect of N deposition was litter-specific, and significant only for 12-month decomposition of Rooibos tea at the global scale. However, in the temperate biome where atmospheric N deposition rates are relatively high, the 12-month mass loss of Green and Rooibos teas decreased significantly with increasing N deposition, explaining 9.5% and 1.1% of the variance, respectively. The expected changes in macroclimate and N deposition at the global scale by the end of this century are estimated to increase the 12-month mass loss of easily decomposable litter by 1.1– 3.5% and of the more stable substrates by 3.8–10.6%, relative to current mass loss. In contrast, expected changes in atmospheric N deposition will decrease the mid-term mass loss of high-quality litter by 1.4–2.2% and that of low-quality litter by 0.9–1.5% in the temperate biome. Our results suggest that projected increases in N deposition may have the capacity to dampen the climate-driven increases in litter decomposition depending on the biome and decomposition stage of substrate

    Early stage litter decomposition across biomes

    Get PDF
    Through litter decomposition enormous amounts of carbon is emitted to the atmosphere. Numerous large-scale decomposition experiments have been conducted focusing on this fundamental soil process in order to understand the controls on the terrestrial carbon transfer to the atmosphere. However, previous studies were mostly based on site-specific litter and methodologies, adding major uncertainty to syntheses, comparisons and meta-analyses across different experiments and sites. In the TeaComposition initiative, the potential litter decomposition is investigated by using standardized substrates (Rooibos and Green tea) for comparison of litter mass loss at 336 sites (ranging from −9 to +26 °C MAT and from 60 to 3113 mm MAP) across different ecosystems. In this study we tested the effect of climate (temperature and moisture), litter type and land-use on early stage decomposition (3 months) across nine biomes. We show that litter quality was the predominant controlling factor in early stage litter decomposition, which explained about 65% of the variability in litter decomposition at a global scale. The effect of climate, on the other hand, was not litter specific and explained <0.5% of the variation for Green tea and 5% for Rooibos tea, and was of significance only under unfavorable decomposition conditions (i.e. xeric versus mesic environments). When the data were aggregated at the biome scale, climate played a significant role on decomposition of both litter types (explaining 64% of the variation for Green tea and 72% for Rooibos tea). No significant effect of land-use on early stage litter decomposition was noted within the temperate biome. Our results indicate that multiple drivers are affecting early stage litter mass loss with litter quality being dominant. In order to be able to quantify the relative importance of the different drivers over time, long-term studies combined with experimental trials are needed.This work was performed within the TeaComposition initiative, carried out by 190 institutions worldwide. We thank Gabrielle Drozdowski for her help with the packaging and shipping of tea, Zora Wessely and Johannes Spiegel for the creative implementation of the acknowledgement card, Josip Dusper for creative implementation of the graphical abstract, Christine Brendle for the GIS editing, and Marianne Debue for her help with the data cleaning. Further acknowledgements go to Adriana Principe, Melanie Köbel, Pedro Pinho, Thomas Parker, Steve Unger, Jon Gewirtzman and Margot McKleeven for the implementation of the study at their respective sites. We are very grateful to UNILEVER for sponsoring the Lipton tea bags and to the COST action ClimMani for scientific discussions, adoption and support to the idea of TeaComposition as a common metric. The initiative was supported by the following grants: ILTER Initiative Grant, ClimMani Short-Term Scientific Missions Grant (COST action ES1308; COST-STSM-ES1308-36004; COST-STM-ES1308-39006; ES1308-231015-068365), INTERACT (EU H2020 Grant No. 730938), and Austrian Environment Agency (UBA). Franz Zehetner acknowledges the support granted by the Prometeo Project of Ecuador's Secretariat of Higher Education, Science, Technology and Innovation (SENESCYT) as well as Charles Darwin Foundation for the Galapagos Islands (2190). Ana I. Sousa, Ana I. Lillebø and Marta Lopes thanks for the financial support to CESAM (UID/AMB/50017), to FCT/MEC through national funds (PIDDAC), and the co-funding by the FEDER, within the PT2020 Partnership Agreement and Compete 2020. The research was also funded by the Portuguese Foundation for Science and Technology, FCT, through SFRH/BPD/107823/2015 (A.I. Sousa), co-funded by POPH/FSE. Thomas Mozdzer thanks US National Science Foundation NSF DEB-1557009. Helena C. Serrano thanks Fundação para a Ciência e Tecnologia (UID/BIA/00329/2013). Milan Barna acknowledges Scientific Grant Agency VEGA (2/0101/18). Anzar A Khuroo acknowledges financial support under HIMADRI project from SAC-ISRO, India

    Early stage litter decomposition across biomes

    Get PDF
    [Departement_IRSTEA]Territoires [TR1_IRSTEA]SEDYVINInternational audienceThrough litter decomposition enormous amounts of carbon is emitted to the atmosphere. Numerous large-scale decomposition experiments have been conducted focusing on this fundamental soil process in order to understand the controls on the terrestrial carbon transfer to the atmosphere. However, previous studies were mostly based on site-specific litter and methodologies, adding major uncertainty to syntheses, comparisons and meta-analyses across different experiments and sites. In the TeaComposition initiative, the potential litter decomposition is investigated by using standardized substrates (Rooibos and Green tea) for comparison of litter mass loss at 336 sites (ranging fro
    corecore