9 research outputs found

    Spatial and temporal modulation of cell instructive cues in a filamentous supramolecular biomaterial

    Get PDF
    Supramolecular materials provide unique opportunities to mimic both the structure and mechanics of the biopolymer networks that compose the extracellular matrix. However, strategies to modify their filamentous structures in space and time in 3D cell culture to study cell behavior as encountered in development and disease are lacking. We herein disclose a multicomponent squaramide-based supramolecular material whose mechanics and bioactivity can be controlled by light through co-assembly of a 1,2-dithiolane (DT) monomer that forms disulfide cross-links. Remarkably, increases in storage modulus from ∼200 Pa to >10 kPa after stepwise photo-cross-linking can be realized without an initiator while retaining colorlessness and clarity. Moreover, viscoelasticity and plasticity of the supramolecular networks decrease upon photo-irradiation, reducing cellular protrusion formation and motility when performed at the onset of cell culture. When applied during 3D cell culture, force-mediated manipulation is impeded and cells move primarily along earlier formed channels in the materials. Additionally, we show photopatterning of peptide cues in 3D using either a photomask or direct laser writing. We demonstrate that these squaramide-based filamentous materials can be applied to the development of synthetic and biomimetic 3D in vitro cell and disease models, where their secondary cross-linking enables mechanical heterogeneity and shaping at multiple length scales

    Global maps of soil temperature

    Get PDF
    Research in global change ecology relies heavily on global climatic grids derived from estimates of air temperature in open areas at around 2 m above the ground. These climatic grids do not reflect conditions below vegetation canopies and near the ground surface, where critical ecosystem functions occur and most terrestrial species reside. Here, we provide global maps of soil temperature and bioclimatic variables at a 1-km² resolution for 0–5 and 5–15 cm soil depth. These maps were created by calculating the difference (i.e., offset) between in-situ soil temperature measurements, based on time series from over 1200 1-km² pixels (summarized from 8500 unique temperature sensors) across all the world’s major terrestrial biomes, and coarse-grained air temperature estimates from ERA5-Land (an atmospheric reanalysis by the European Centre for Medium-Range Weather Forecasts). We show that mean annual soil temperature differs markedly from the corresponding gridded air temperature, by up to 10°C (mean = 3.0 ± 2.1°C), with substantial variation across biomes and seasons. Over the year, soils in cold and/or dry biomes are substantially warmer (+3.6 ± 2.3°C) than gridded air temperature, whereas soils in warm and humid environments are on average slightly cooler (-0.7 ± 2.3°C). The observed substantial and biome-specific offsets emphasize that the projected impacts of climate and climate change on near-surface biodiversity and ecosystem functioning are inaccurately assessed when air rather than soil temperature is used, especially in cold environments. The global soil-related bioclimatic variables provided here are an important step forward for any application in ecology and related disciplines. Nevertheless, we highlight the need to fill remaining geographic gaps by collecting more in-situ measurements of microclimate conditions to further enhance the spatiotemporal resolution of global soil temperature products for ecological applications

    Global maps of soil temperature.

    Get PDF
    Research in global change ecology relies heavily on global climatic grids derived from estimates of air temperature in open areas at around 2 m above the ground. These climatic grids do not reflect conditions below vegetation canopies and near the ground surface, where critical ecosystem functions occur and most terrestrial species reside. Here, we provide global maps of soil temperature and bioclimatic variables at a 1-km2 resolution for 0-5 and 5-15 cm soil depth. These maps were created by calculating the difference (i.e. offset) between in situ soil temperature measurements, based on time series from over 1200 1-km2 pixels (summarized from 8519 unique temperature sensors) across all the world's major terrestrial biomes, and coarse-grained air temperature estimates from ERA5-Land (an atmospheric reanalysis by the European Centre for Medium-Range Weather Forecasts). We show that mean annual soil temperature differs markedly from the corresponding gridded air temperature, by up to 10°C (mean = 3.0 ± 2.1°C), with substantial variation across biomes and seasons. Over the year, soils in cold and/or dry biomes are substantially warmer (+3.6 ± 2.3°C) than gridded air temperature, whereas soils in warm and humid environments are on average slightly cooler (-0.7 ± 2.3°C). The observed substantial and biome-specific offsets emphasize that the projected impacts of climate and climate change on near-surface biodiversity and ecosystem functioning are inaccurately assessed when air rather than soil temperature is used, especially in cold environments. The global soil-related bioclimatic variables provided here are an important step forward for any application in ecology and related disciplines. Nevertheless, we highlight the need to fill remaining geographic gaps by collecting more in situ measurements of microclimate conditions to further enhance the spatiotemporal resolution of global soil temperature products for ecological applications

    Klemtoonbeheersing bij Dyslexie

    No full text
    In dit onderzoek is gekeken naar klemtoonbeheersing bij dyslexie. De centrale vraag hierbij was of er een verschil is in klemtoonbeheersing tussen dyslectische en niet dyslectische kinderen. Het doel was meer te weten te komen over de fonologisch tekort hypothese. Deze hypothese stelt kort gezegd dat dyslexie het resultaat is van, of in ieder geval verwant is aan een algemeen fonologisch probleem. Indien dit zo is, zou dus ook de klemtoonbeheersing (een onderdeel van de fonologie) aangetast moeten zijn bij dyslectici. Dit werd getest door middel van een klemtoonproductie- en klemtoonperceptietest bij kinderen van 8 à 9 jaar oud. Helaas werden hierbij weinig significante verschillen gevonden waardoor er moeilijk conclusies aan de resultaten verbonden kunnen worden. Wel leek er sprake van een lichte trend waarbij de dyslectische kinderen net iets minder goed scoorden dan de controlegroep. Bovendien werd er bij de dyslectici een verband geconstateerd tussen de scores van de productietest en het leesniveau. Bij de controlegroep bleek dit niet het geval

    Spatial and Temporal Modulation of Cell Instructive Cues in a Filamentous Supramolecular Biomaterial

    No full text
    Supramolecular materials provide unique opportunities to mimic both the structure and mechanics of the biopolymer networks that compose the extracellular matrix. However, strategies to modify their filamentous structures in space and time in 3D cell culture to study cell behavior as encountered in development and disease are lacking. We herein disclose a multicomponent squaramide-based supramolecular material whose mechanics and bioactivity can be controlled by light through co-assembly of a 1,2-dithiolane (DT) monomer that forms disulfide cross-links. Remarkably, increases in storage modulus from ∼200 Pa to >10 kPa after stepwise photo-cross-linking can be realized without an initiator while retaining colorlessness and clarity. Moreover, viscoelasticity and plasticity of the supramolecular networks decrease upon photo-irradiation, reducing cellular protrusion formation and motility when performed at the onset of cell culture. When applied during 3D cell culture, force-mediated manipulation is impeded and cells move primarily along earlier formed channels in the materials. Additionally, we show photopatterning of peptide cues in 3D using either a photomask or direct laser writing. We demonstrate that these squaramide-based filamentous materials can be applied to the development of synthetic and biomimetic 3D in vitro cell and disease models, where their secondary cross-linking enables mechanical heterogeneity and shaping at multiple length scales

    Anti-Tumor Necrosis Factor With a Glyco-Engineered Fc-Region Has Increased Efficacy in Mice With Colitis

    No full text
    Although tumor necrosis factor (TNF) antagonists reduce many clinical features of inflammatory bowel disease, complete mucosal healing occurs in fewer than 50% of patients. The Fc-region of monoclonal antibodies against TNF has immunosuppressive properties via effects on macrophage polarization. We examined the interaction between the anti-TNF Fc-region and Fcγ receptors (FcγR), and whether the absence of the Fc core fucose (which increases binding to FcγRIIIa) increases the efficacy of anti-TNF in mice with colitis. We generated Rag1-/- mice that lack all activating FcγRs (FcγRI, FcγRIII, and FcγRIV; called FcγR-/-Rag1-/- mice). We produced hypo-fucosylated antibodies against mouse and human TNF (adalimumab). Colitis was induced in mice by transfer of CD4+CD45RBhi to FcγR-/-Rag1-/- or Rag1-/- littermates; mice were given different antibodies against TNF or isotype (control) antibodies and disease activity index scores were determined. Colon tissues were collected and analyzed by histology. Human peripheral blood mononuclear cells (PBMCs) were isolated from blood of healthy donors. T-cell proliferation and proportions of CD206+ (immune regulatory) macrophages were measured in mixed lymphocyte reactions. Human PBMCs were genotyped for FCGR3A158 (the FcγRIIIa-158F allotype displays a lower Fc binding affinity) using the TaqMan single nucleotide polymorphism genotype assay. Rag1-/- mice with colitis given anti-TNF had near complete mucosal healing and Rag1-/- mice given an isotype control antibody developed severe colitis. In contrast, FcγR-/-Rag1-/- mice were refractory to the effects of anti-TNF: their histological colitis scores were as severe as those from FcγR-/-Rag1-/- mice given a control antibody. Colons from Rag1-/- mice that received anti-TNF had an increased number of CD206+ macrophages compared with Rag1-/- mice given control antibody; in FcγR-/-Rag1-/- mice given anti-TNF these numbers were as low as FcγR-/-Rag1-/- given the control antibody. In human PBMCs, anti-TNF increased the number of CD206+ macrophages: this required expression of FcγRIIIa; numbers of these cells were reduced in PBMCs with the low-affinity FcγRIIIa-158F genotype. A hypo-fucosylated form of adalimumab bound human FcγRIIIa with a higher affinity than control adalimumab. When hypo-fucosylated adalimumab was added to PBMCs, a larger number of CD206+ macrophages formed and T-cell proliferation was reduced, compared with addition of a control adalimumab. Hypo-fucosylated adalimumab increased the number of CD206+ macrophages in PMBCs that expressed the low-affinity FcγRIIIa. In mice with colitis, hypo-fucosylated anti-TNF significantly increased the number of CD206+ macrophages in the colon compared with control anti-TNF and was more effective in reducing colitis severity as measured by histology. In a study of the in vitro and in vivo mechanisms of anti-TNF, we found FcγR engagement by anti-TNF to be required for reduction of colitis in mice and development of CD206+ macrophages. A hypo-fucosylated form of anti-TNF binds FcγRIIIa with higher affinity and induces development of CD206+ macrophages in human PBMCs, especially PBMCs that express low-affinity FcγRIIIa. Hypo-fucosylated anti-TNF might be more effective in patients with inflammatory bowel diseas

    SoilTemp : a global database of near\u2010surface temperature

    No full text
    corecore