18 research outputs found

    Development and Stability Study of an Omeprazole Suppository for Infants

    Get PDF
    Background and Objective Omeprazole is a proton pump inhibitor (PPI) that is used in acid suppression therapy in infants. In this study we aimed to develop a pediatric omeprazole suppository, with good physical and chemical stability, suitable for pharmaceutical batch production. Methods The composition of the suppository consisted of omeprazole, witepsol H15 and arginine (L) base. To achieve evenly distributed omeprazole suspension suppositories, the temperature, stirring rate, and arginine (L) base amount were varied. A previously validated quantitative high-performance liquid chromatography–ultraviolet method was modifed and a long-term stability study was performed for one year. Results Evenly distributed omeprazole suspension suppositories were obtained by adding 100 mg arginine (L) base and pouring at a temperature of 34.7 °C and a stirring speed of 200 rpm. The long-term stability study showed no signs of discoloration and a stable omeprazole content between 90 and 110% over 1 year if stored in the dark at room temperature. Conclusion We developed a pediatric omeprazole suppository. This formulation may provide a good alternative to manipulated commercial or extemporaneously compounded omeprazole oral formulations for infants. Clinical studies are needed to establish efcacy and safety in this young population

    Kaon Production and Kaon to Pion Ratio in Au+Au Collisions at \snn=130 GeV

    Get PDF
    Mid-rapidity transverse mass spectra and multiplicity densities of charged and neutral kaons are reported for Au+Au collisions at \snn=130 GeV at RHIC. The spectra are exponential in transverse mass, with an inverse slope of about 280 MeV in central collisions. The multiplicity densities for these particles scale with the negative hadron pseudo-rapidity density. The charged kaon to pion ratios are K+/π=0.161±0.002(stat)±0.024(syst)K^+/\pi^- = 0.161 \pm 0.002 {\rm (stat)} \pm 0.024 {\rm (syst)} and K/π=0.146±0.002(stat)±0.022(syst)K^-/\pi^- = 0.146 \pm 0.002 {\rm (stat)} \pm 0.022 {\rm (syst)} for the most central collisions. The K+/πK^+/\pi^- ratio is lower than the same ratio observed at the SPS while the K/πK^-/\pi^- is higher than the SPS result. Both ratios are enhanced by about 50% relative to p+p and pˉ\bar{\rm p}+p collision data at similar energies.Comment: 6 pages, 3 figures, 1 tabl

    Phi meson production in Au+Au and p+p collisions at sqrt (s)=200 GeV

    Get PDF
    We report the STAR measurement of Phi meson production in Au+Au and p+p collisions at sqrt (s)=200 GeV. Using the event mixing technique, the Phi spectra and yields are obtained at mid-rapidity for five centrality bins in Au+Au collisions and for non-singly-diffractive p+p collisions. It is found that the Phi transverse momentum distributions from Au+Au collisions are better fitted with a single-exponential while the p+p spectrum is better described by a double-exponential distribution. The measured nuclear modification factors indicate that Phi production in central Au+Au collisions is suppressed relative to peripheral collisions when scaled by the number of binary collisions. The systematics of versus centrality and the constant Phi/K- ratio versus beam species, centrality, and collision energy rule out kaon coalescence as the dominant mechanism for Phi production.Comment: 6 pages, 3 figures, submitted to Phys. Rev. Let

    Experimental and Theoretical Challenges in the Search for the Quark Gluon Plasma: The STAR Collaboration's Critical Assessment of the Evidence from RHIC Collisions

    Get PDF
    We review the most important experimental results from the first three years of nucleus-nucleus collision studies at RHIC, with emphasis on results from the STAR experiment, and we assess their interpretation and comparison to theory. The theory-experiment comparison suggests that central Au+Au collisions at RHIC produce dense, rapidly thermalizing matter characterized by: (1) initial energy densities above the critical values predicted by lattice QCD for establishment of a Quark-Gluon Plasma (QGP); (2) nearly ideal fluid flow, marked by constituent interactions of very short mean free path, established most probably at a stage preceding hadron formation; and (3) opacity to jets. Many of the observations are consistent with models incorporating QGP formation in the early collision stages, and have not found ready explanation in a hadronic framework. However, the measurements themselves do not yet establish unequivocal evidence for a transition to this new form of matter. The theoretical treatment of the collision evolution, despite impressive successes, invokes a suite of distinct models, degrees of freedom and assumptions of as yet unknown quantitative consequence. We pose a set of important open questions, and suggest additional measurements, at least some of which should be addressed in order to establish a compelling basis to conclude definitively that thermalized, deconfined quark-gluon matter has been produced at RHIC.Comment: 101 pages, 37 figures; revised version to Nucl. Phys.

    Formation of dense partonic matter in relativistic nucleus-nucleus collisions at RHIC: Experimental evaluation by the PHENIX collaboration

    Full text link
    Extensive experimental data from high-energy nucleus-nucleus collisions were recorded using the PHENIX detector at the Relativistic Heavy Ion Collider (RHIC). The comprehensive set of measurements from the first three years of RHIC operation includes charged particle multiplicities, transverse energy, yield ratios and spectra of identified hadrons in a wide range of transverse momenta (p_T), elliptic flow, two-particle correlations, non-statistical fluctuations, and suppression of particle production at high p_T. The results are examined with an emphasis on implications for the formation of a new state of dense matter. We find that the state of matter created at RHIC cannot be described in terms of ordinary color neutral hadrons.Comment: 510 authors, 127 pages text, 56 figures, 1 tables, LaTeX. Submitted to Nuclear Physics A as a regular article; v3 has minor changes in response to referee comments. Plain text data tables for the points plotted in figures for this and previous PHENIX publications are (or will be) publicly available at http://www.phenix.bnl.gov/papers.htm

    Hadronization geometry from net-charge angular correlations on momentum subspace (η,ϕ\eta,\phi) in Au-Au collisions at sNN=130\sqrt{s_{NN}} = 130 GeV

    Get PDF
    We present the first measurements of charge-dependent correlations on angular difference variables η1η2\eta_1 - \eta_2 (pseudorapidity) and ϕ1ϕ2\phi_1 - \phi_2 (azimuth) for primary charged hadrons with transverse momentum 0.15pt20.15 \leq p_t \leq 2 GeV/cc and η1.3|\eta| \leq 1.3 from Au-Au collisions at sNN=130\sqrt{s_{NN}} = 130 GeV. We observe correlation structures not predicted by theory but consistent with evolution of hadron emission geometry with increasing centrality from one-dimensional fragmentation of color strings along the beam direction to an at least two-dimensional hadronization geometry along the beam and azimuth directions of a hadron-opaque bulk medium.Comment: 8 pages, 4 figure
    corecore