36 research outputs found
Identity Leadership, Employee Burnout and the Mediating Role of Team Identification: Evidence from the Global Identity Leadership Development Project
Do leaders who build a sense of shared social identity in their teams thereby protect them from the adverse effects of workplace stress? This is a question that the present paper explores by testing the hypothesis that identity leadership contributes to stronger team identification among employees and, through this, is associated with reduced burnout. We tested this model with unique datasets from the Global Identity Leadership Development (GILD) project with participants from all inhabited continents. We compared two datasets from 2016/2017 (n = 5290; 20 countries) and 2020/2021 (n = 7294; 28 countries) and found very similar levels of identity leadership, team identification and burnout across the five years. An inspection of the 2020/2021 data at the onset of and later in the COVID-19 pandemic showed stable identity leadership levels and slightly higher levels of both burnout and team identification. Supporting our hypotheses, we found almost identical indirect effects (2016/2017, b = −0.132; 2020/2021, b = −0.133) across the five-year span in both datasets. Using a subset of n = 111 German participants surveyed over two waves, we found the indirect effect confirmed over time with identity leadership (at T1) predicting team identification and, in turn, burnout, three months later. Finally, we explored whether there could be a “too-much-of-a-good-thing” effect for identity leadership. Speaking against this, we found a u-shaped quadratic effect whereby ratings of identity leadership at the upper end of the distribution were related to even stronger team identification and a stronger indirect effect on reduced burnout
The Influence of Age and Sex on Genetic Associations with Adult Body Size and Shape : A Large-Scale Genome-Wide Interaction Study
Genome-wide association studies (GWAS) have identified more than 100 genetic variants contributing to BMI, a measure of body size, or waist-to-hip ratio (adjusted for BMI, WHRadjBMI), a measure of body shape. Body size and shape change as people grow older and these changes differ substantially between men and women. To systematically screen for age-and/or sex-specific effects of genetic variants on BMI and WHRadjBMI, we performed meta-analyses of 114 studies (up to 320,485 individuals of European descent) with genome-wide chip and/or Metabochip data by the Genetic Investigation of Anthropometric Traits (GIANT) Consortium. Each study tested the association of up to similar to 2.8M SNPs with BMI and WHRadjBMI in four strata (men 50y, women 50y) and summary statistics were combined in stratum-specific meta-analyses. We then screened for variants that showed age-specific effects (G x AGE), sex-specific effects (G x SEX) or age-specific effects that differed between men and women (G x AGE x SEX). For BMI, we identified 15 loci (11 previously established for main effects, four novel) that showed significant (FDR= 50y). No sex-dependent effects were identified for BMI. For WHRadjBMI, we identified 44 loci (27 previously established for main effects, 17 novel) with sex-specific effects, of which 28 showed larger effects in women than in men, five showed larger effects in men than in women, and 11 showed opposite effects between sexes. No age-dependent effects were identified for WHRadjBMI. This is the first genome-wide interaction meta-analysis to report convincing evidence of age-dependent genetic effects on BMI. In addition, we confirm the sex-specificity of genetic effects on WHRadjBMI. These results may providefurther insights into the biology that underlies weight change with age or the sexually dimorphism of body shape.Peer reviewe