638 research outputs found

    Control by neuromodulation: A tutorial

    Get PDF
    This tutorial provides an introduction to the topic of neuromodulation as an important control paradigm for natural and artificial neuronal networks. We review how neuromodulation modulates excitability, and how neuromodulation interacts with homeostasis. We stress how modulating nodal excitability provides a robust and versatile control principle to dynamically reconfigure the connectivity of rhythmic circuits and to shape the spatio-temporal synchrony of large populations.ER

    Towards an Accurate Identification of Pyloric Neuron Activity with VSDi

    Get PDF
    Voltage-sensitive dye imaging (VSDi) which enables simultaneous optical recording of many neurons in the pyloric circuit of the stomatogastric ganglion is an important technique to supplement electrophysiological recordings. However, utilising the technique to identify pyloric neurons directly is a computationally exacting task that requires the development of sophisticated signal processing procedures to analyse the tri-phasic pyloric patterns generated by these neurons. This paper presents our work towards commissioning such procedures. The results achieved to date are most encouraging

    Oceanic loading of wildfire-derived organic compounds from a small mountainous river

    Get PDF
    Copyright 2008 by the American Geophysical Union.Small mountainous rivers (SMRs) export substantial amounts of sediment into the world's oceans. The concomitant yield of organic carbon (OC) associated with this class of rivers has also been shown to be significant and compositionally unique. We report here excessively high loadings of polycyclic aromatic hydrocarbons (PAHs), lignin, and levoglucosan, discharged from the Santa Clara River into the Santa Barbara Channel. The abundance of PAHs, levoglucosan, and lignin in Santa Barbara Channel sediments ranged from 201.7 to 1232.3 ng gdw−1, 1.3 to 6.9 μg gdw−1, and 0.3 to 2.2 mg per 100 mg of the sedimentary OC, respectively. Assuming a constant rate of sediment accumulation, the annual fluxes of PAHs, levoglucosan, and lignin, to the Santa Barbara Channel were respectively, 885.5 ± 170.2 ng cm−2 a−1, 3.5 ± 1.9 μg cm−2 a−1 and 1.4 ± 0.3 mg per 100 mg OC cm−2 a−1, over ∼30 years. The close agreement between PAHs, levoglucosan, and lignin abundance suggests that the depositional flux of these compounds is largely biomass combustion-derived. To that end, use of the Santa Clara River as a model for SMRs suggests this class of rivers may be one of the largest contributors of pyrolyzed carbon to coastal systems and the open ocean. Wildfire associated carbon discharged from other high yield fluvial systems, when considered collectively, may be a significant source of lignin, pyrolytic PAHs, and other pyrogenic compounds to the ocean. Extrapolating these methods over geologic time may offer useful historical information about carbon sequestration and burial in coastal sediments and affect coastal carbon budgets

    Antlia Dwarf Galaxy: Distance, quantitative morphology and recent formation history via statistical field correction

    Full text link
    We apply a statistical field correction technique originally designed to determine membership of high redshift galaxy clusters to Hubble Space Telescope imaging of the Antlia Dwarf Galaxy; a galaxy at the very edge of the Local Group. Using the tip of the red giant branch standard candle method coupled with a simple Sobel edge detection filter we find a new distance to Antlia of 1.31 +/- 0.03 Mpc. For the first time for a Local Group Member, we compute the concentration, asymmetry and clumpiness (CAS) quantitative morphology parameters for Antlia from the distribution of resolved stars in the HST/ACS field, corrected with a new method for contaminants and complement these parameters with the Gini coefficient (G) and the second order moment of the brightest 20 per cent of the flux (M_20). We show that it is a classic dwarf elliptical (C = 2.0, A = 0.063, S = 0.077, G = 0.39 and M_20 = -1.17 in the F814W band), but has an appreciable blue stellar population at its core, confirming on-going star-formation. The values of asymmetry and clumpiness, as well as Gini and M_20 are consistent with an undisturbed galaxy. Although our analysis suggests that Antlia may not be tidally influenced by NGC 3109 it does not necessarily preclude such interaction.Comment: Accepted for publication in MNRA

    Born to learn: The inspiration, progress, and future of evolved plastic artificial neural networks

    Get PDF
    Biological plastic neural networks are systems of extraordinary computational capabilities shaped by evolution, development, and lifetime learning. The interplay of these elements leads to the emergence of adaptive behavior and intelligence. Inspired by such intricate natural phenomena, Evolved Plastic Artificial Neural Networks (EPANNs) use simulated evolution in-silico to breed plastic neural networks with a large variety of dynamics, architectures, and plasticity rules: these artificial systems are composed of inputs, outputs, and plastic components that change in response to experiences in an environment. These systems may autonomously discover novel adaptive algorithms, and lead to hypotheses on the emergence of biological adaptation. EPANNs have seen considerable progress over the last two decades. Current scientific and technological advances in artificial neural networks are now setting the conditions for radically new approaches and results. In particular, the limitations of hand-designed networks could be overcome by more flexible and innovative solutions. This paper brings together a variety of inspiring ideas that define the field of EPANNs. The main methods and results are reviewed. Finally, new opportunities and developments are presented

    Toward a multiscale modeling framework for understanding serotonergic function

    Get PDF
    Despite its importance in regulating emotion and mental wellbeing, the complex structure and function of the serotonergic system present formidable challenges toward understanding its mechanisms. In this paper, we review studies investigating the interactions between serotonergic and related brain systems and their behavior at multiple scales, with a focus on biologically-based computational modeling. We first discuss serotonergic intracellular signaling and neuronal excitability, followed by neuronal circuit and systems levels. At each level of organization, we will discuss the experimental work accompanied by related computational modeling work. We then suggest that a multiscale modeling approach that integrates the various levels of neurobiological organization could potentially transform the way we understand the complex functions associated with serotonin

    Concert recording 2017-04-27

    Get PDF
    [Track 1]. Adoramus te, Christe / Giovanni Pierluigi da Palestrina -- [Track 2]. Ubi caritas / Maurice Duruflé -- [Track 3]. Three Hungarian folk songs. I. The handsome butcher II. Apple, apple III. The old woman / Matyas Seiber -- [Track 4]. He watching over Israel from Elijah / Felix Mendelssohn Bartholdy -- [Track 5]. Ain\u27t got time to die / Hall Johnson

    Histamine modulates spinal motoneurons and locomotor circuits

    Get PDF
    Spinal motoneurons and locomotor networks are regulated by monoamines, among which, the contribution of histamine has yet to be fully addressed. The present study investigates histaminergic regulation of spinal activity, combining intra- and extracellular electrophysiological recordings from neonatal rat spinal cord in vitro preparations. Histamine dose-dependently and reversibly generated motoneuron depolarization and action potential firing. Histamine (20ĂŽÂĽM) halved the area of dorsal root reflexes and always depolarized motoneurons. The majority of cells showed a transitory repolarization, while 37% showed a sustained depolarization maintained with intense firing. Extracellularly, histamine depolarized ventral roots (VRs), regardless of blockage of ionotropic glutamate receptors. Initial, transient glutamate-mediated bursting was synchronous among VRs, with some bouts of locomotor activity in a subgroup of preparations. After washout, the amplitude of spontaneous tonic discharges increased. No desensitization or tachyphylaxis appeared after long perfusion or serial applications of histamine. On the other hand, histamine induced single motoneuron and VR depolarization, even in the presence of tetrodotoxin (TTX). During chemically induced fictive locomotion (FL), histamine depolarized VRs. Histamine dose-dependently increased rhythm periodicity and reduced cycle amplitude until near suppression. This study demonstrates that histamine induces direct motoneuron membrane depolarization and modulation of locomotor output, indicating new potential targets for locomotor neurorehabilitation
    • …
    corecore