919 research outputs found

    Topological String on Toric CY3s in Large Complex Structure Limit

    Full text link
    We develop a non planar topological vertex formalism and we use it to study the A-model partition function Ztop\mathcal{Z}_{top} of topological string on the class of toric Calabi-Yau threefolds (CY3) in large complex structure limit. To that purpose, we first consider the T2×RT^{2}\times R special Lagrangian fibration of generic CY3-folds and we give the realization of the class of large μ\mu toric CY3-folds in terms of supersymmetric gauged linear sigma model with \emph{non zero} gauge invariant superpotentials )% \mathcal{W}(\Phi ) . Then, we focus on a one complex parameter supersymmetric U(1)U(1) gauged model involving six chiral superfields Φi{\Phi_{i}} with W=μ(i=05Φi)\mathcal{W}=\mu (\prod\nolimits_{i=0}^{5}\Phi_{i}) and we use it to compute the function Ztop\mathcal{Z}_{top} for the case of the local elliptic curve in the limit μ\mu \to \infty .Comment: Latex, 38 pages, 12 figures. To appear in Nucl Phys

    Chitosan-Cellulose Composite for Wound Dressing Material. Part 2. Antimicrobial Activity, Blood Absorption Ability, and Biocompatibility

    Get PDF
    Chitosan (CS), a polysaccharide derived from chitin, the second most abundant polysaccharide, is widely used in the medical world because of its natural and nontoxic properties and its innate ability for antibacterial and hemostasis effects. In this study, the novel composites containing CS and cellulose (CEL) (i.e., [CEL + CS]), which we have previously synthesized using a green and totally recyclable method, were investigated for their antimicrobial activity, absorption of anticoagulated whole blood, anti-inflammatory activity through the reduction of tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6), and the biocompatibility with human fibroblasts. The [CEL + CS] composites were found to inhibit the growth of both Gram positive and negative micro-organisms. For examples, the regenerated 100% lyophilized chitosan material was found to reduce growth of Escherichia coli (ATCC 8739 and vancomycin resistant Enterococcus faecalis (ATCC 51299) by 78, 36, and 64%, respectively. The composites are nontoxic to fibroblasts; that is, fibroblasts, which are critical to the formation of connective tissue matrix were found to grow and proliferate in the presence of the composites. They effectively absorb blood, and at the same rate and volume as commercially available wound dressings. The composites, in both air-dried and lyophilized forms, significantly inhibit the production of TNF-α and IL-6 by stimulated macrophages. These results clearly indicate that the biodegradable, biocompatible and nontoxic [CEL + CS] composites, particularly those dried by lyophilizing, can be effectively used as a material in wound dressings

    Manipulating the motion of large neutral molecules

    Get PDF
    Large molecules have complex potential-energy surfaces with many local minima. They exhibit multiple stereo-isomers, even at very low temperatures. In this paper we discuss the different approaches for the manipulation of the motion of large and complex molecules, like amino acids or peptides, and the prospects of state- and conformer-selected, focused, and slow beams of such molecules for studying their molecular properties and for fundamental physics studies. Accepted for publication in Faraday Disc. 142 (2009), DOI: 10.1039/b820045aComment: 12 page

    Randomizing world trade. II. A weighted network analysis

    Get PDF
    Based on the misleading expectation that weighted network properties always offer a more complete description than purely topological ones, current economic models of the International Trade Network (ITN) generally aim at explaining local weighted properties, not local binary ones. Here we complement our analysis of the binary projections of the ITN by considering its weighted representations. We show that, unlike the binary case, all possible weighted representations of the ITN (directed/undirected, aggregated/disaggregated) cannot be traced back to local country-specific properties, which are therefore of limited informativeness. Our two papers show that traditional macroeconomic approaches systematically fail to capture the key properties of the ITN. In the binary case, they do not focus on the degree sequence and hence cannot characterize or replicate higher-order properties. In the weighted case, they generally focus on the strength sequence, but the knowledge of the latter is not enough in order to understand or reproduce indirect effects.Comment: See also the companion paper (Part I): arXiv:1103.1243 [physics.soc-ph], published as Phys. Rev. E 84, 046117 (2011

    Expanding the parameters of academia

    Get PDF
    This paper draws on qualitative data gathered from two studies funded by the UK Leadership Foundation for Higher Education to examine the expansion of academic identities in higher education. It builds on Whitchurch’s earlier work, which focused primarily on professional staff, to suggest that the emergence of broadly based projects such as widening participation, learning support and community partnership is also impacting on academic identities. Thus, academic as well as professional staff are increasingly likely to work in multi-professional teams across a variety of constituencies, as well as with external partners, and the binary distinction between ‘academic’ and ‘non-academic’ roles and activities is no longer clear-cut. Moreover, there is evidence from the studies of an intentionality about deviations from mainstream academic career routes among respondents who could have gone either way. Consideration is therefore given to factors that influence individuals to work in more project-oriented areas, as well as to variables that affect ways in which these roles and identities develop. Finally, three models of academically oriented project activity are identified, and the implications of an expansion of academic identities are reviewed

    Vicious walkers, friendly walkers and Young tableaux II: With a wall

    Full text link
    We derive new results for the number of star and watermelon configurations of vicious walkers in the presence of an impenetrable wall by showing that these follow from standard results in the theory of Young tableaux, and combinatorial descriptions of symmetric functions. For the problem of nn-friendly walkers, we derive exact asymptotics for the number of stars and watermelons both in the absence of a wall and in the presence of a wall.Comment: 35 pages, AmS-LaTeX; Definitions of n-friendly walkers clarified; the statement of Theorem 4 and its proof were correcte

    Effects of antiplatelet therapy on stroke risk by brain imaging features of intracerebral haemorrhage and cerebral small vessel diseases: subgroup analyses of the RESTART randomised, open-label trial

    Get PDF
    Background Findings from the RESTART trial suggest that starting antiplatelet therapy might reduce the risk of recurrent symptomatic intracerebral haemorrhage compared with avoiding antiplatelet therapy. Brain imaging features of intracerebral haemorrhage and cerebral small vessel diseases (such as cerebral microbleeds) are associated with greater risks of recurrent intracerebral haemorrhage. We did subgroup analyses of the RESTART trial to explore whether these brain imaging features modify the effects of antiplatelet therapy

    Development of Degradable, pH‐Sensitive Star Vectors for Enhancing the Cytoplasmic Delivery of Nucleic Acids

    Full text link
    The report describes the synthesis of degradable, pH‐sensitive, membrane‐destabilizing, star‐shaped polymers where copolymers of hydrophobic hexyl methacrylate (HMA) and 2‐(dimethylamino)ethyl methacrylate (DMAEMA) monomers are grafted from the secondary face of a beta‐cyclodextrin (β‐CD) core via acid‐labile hydrazone linkages using atom transfer radical polymerization. The effect of the graft's molecular weight, HMA/DMAEMA molar ratio, and the fraction of DMAEMA converted to cationic N,N,N‐trimethylaminoethyl methacrylate (TMAEMA) monomers on polymer's transfection capacity is systematically investigated. Results show that all star‐shaped polymers condense anti‐GAPDH silencing RNA (siRNA) into nanosized particles at +/‐ ratio ≤ 4:1. Star polymers with shorter (25kDa) P(HMA‐ co ‐DMAEMA‐ co ‐TMAEMA) grafts are more efficient and less cytotoxic than carriers with longer (40kDa) grafts. The results show that increasing the ratio of hydrophobic HMA monomers in graft's composition higher than 50 mole% dramatically reduces polymer's aqueous solubility and abolishes their transfection capacity. Further, retention of DMAEMA monomers in graft's composition provide a buffering capacity that enhanced the endosomal escape and transfection capacity of the polymers. These systematic studies show that β‐CD‐P(HMA‐ co ‐DMAEMA‐ co ‐TMAEMA) 4.8 polymer with a 25 kDa average graft's molecular weight and a 50/25/25 ratio of HMA/DMAEMA/TMAEMA monomers is the most efficient carrier in delivering the siRNA cargo into the cytoplasm of epithelial cancer cells. A series of degradable, pH‐sensitive, membrane‐destabilizing, star‐shaped polymers is synthesized. Star polymers are engineered to “sense” the drop in endosomal pH, which triggers the hydrolysis of acid‐labile hydrazone linkages and release of membrane‐active grafts that rupture the endosomal membrane and release the loaded siRNA cargo into the cytoplasm to produce the desired knockdown of targeted gene expression at both the mRNA and protein levels.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/99666/1/3885_ftp.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/99666/2/adfm_201203762_sm_suppl.pd
    corecore