54 research outputs found

    Uncertainty Quantification in Machine Learning for Biosignal Applications -- A Review

    Get PDF
    Uncertainty Quantification (UQ) has gained traction in an attempt to fix the black-box nature of Deep Learning. Specifically (medical) biosignals such as electroencephalography (EEG), electrocardiography (ECG), electroocculography (EOG) and electromyography (EMG) could benefit from good UQ, since these suffer from a poor signal to noise ratio, and good human interpretability is pivotal for medical applications and Brain Computer Interfaces. In this paper, we review the state of the art at the intersection of Uncertainty Quantification and Biosignal with Machine Learning. We present various methods, shortcomings, uncertainty measures and theoretical frameworks that currently exist in this application domain. Overall it can be concluded that promising UQ methods are available, but that research is needed on how people and systems may interact with an uncertainty model in a (clinical) environment

    Uncertainty Quantification in Machine Learning for Biosignal Applications -- A Review

    Get PDF
    Uncertainty Quantification (UQ) has gained traction in an attempt to fix the black-box nature of Deep Learning. Specifically (medical) biosignals such as electroencephalography (EEG), electrocardiography (ECG), electroocculography (EOG) and electromyography (EMG) could benefit from good UQ, since these suffer from a poor signal to noise ratio, and good human interpretability is pivotal for medical applications and Brain Computer Interfaces. In this paper, we review the state of the art at the intersection of Uncertainty Quantification and Biosignal with Machine Learning. We present various methods, shortcomings, uncertainty measures and theoretical frameworks that currently exist in this application domain. Overall it can be concluded that promising UQ methods are available, but that research is needed on how people and systems may interact with an uncertainty model in a (clinical) environment

    Uncertainty Quantification in Machine Learning for Biosignal Applications -- A Review

    Full text link
    Uncertainty Quantification (UQ) has gained traction in an attempt to fix the black-box nature of Deep Learning. Specifically (medical) biosignals such as electroencephalography (EEG), electrocardiography (ECG), electroocculography (EOG) and electromyography (EMG) could benefit from good UQ, since these suffer from a poor signal to noise ratio, and good human interpretability is pivotal for medical applications and Brain Computer Interfaces. In this paper, we review the state of the art at the intersection of Uncertainty Quantification and Biosignal with Machine Learning. We present various methods, shortcomings, uncertainty measures and theoretical frameworks that currently exist in this application domain. Overall it can be concluded that promising UQ methods are available, but that research is needed on how people and systems may interact with an uncertainty model in a (clinical) environment.Comment: 26 pages, 13 figures, 3 table

    Uncertainty Quantification for cross-subject Motor Imagery classification

    Full text link
    Uncertainty Quantification aims to determine when the prediction from a Machine Learning model is likely to be wrong. Computer Vision research has explored methods for determining epistemic uncertainty (also known as model uncertainty), which should correspond with generalisation error. These methods theoretically allow to predict misclassifications due to inter-subject variability. We applied a variety of Uncertainty Quantification methods to predict misclassifications for a Motor Imagery Brain Computer Interface. Deep Ensembles performed best, both in terms of classification performance and cross-subject Uncertainty Quantification performance. However, we found that standard CNNs with Softmax output performed better than some of the more advanced methods

    Abdominal aortic aneurysm is associated with a variant in low-density lipoprotein receptor-related protein 1

    Get PDF
    Abdominal aortic aneurysm (AAA) is a common cause of morbidity and mortality and has a significant heritability. We carried out a genome-wide association discovery study of 1866 patients with AAA and 5435 controls and replication of promising signals (lead SNP with a p value < 1 × 10-5) in 2871 additional cases and 32,687 controls and performed further follow-up in 1491 AAA and 11,060 controls. In the discovery study, nine loci demonstrated association with AAA (p < 1 × 10-5). In the replication sample, the lead SNP at one of these loci, rs1466535, located within intron 1 of low-density-lipoprotein receptor-related protein 1 (LRP1) demonstrated significant association (p = 0.0042). We confirmed the association of rs1466535 and AAA in our follow-up study (p = 0.035). In a combined analysis (6228 AAA and 49182 controls), rs1466535 had a consistent effect size and direction in all sample sets (combined p = 4.52 × 10-10, odds ratio 1.15 [1.10-1.21]). No associations were seen for either rs1466535 or the 12q13.3 locus in independent association studies of coronary artery disease, blood pressure, diabetes, or hyperlipidaemia, suggesting that this locus is specific to AAA. Gene-expression studies demonstrated a trend toward increased LRP1 expression for the rs1466535 CC genotype in arterial tissues; there was a significant (p = 0.029) 1.19-fold (1.04-1.36) increase in LRP1 expression in CC homozygotes compared to TT homozygotes in aortic adventitia. Functional studies demonstrated that rs1466535 might alter a SREBP-1 binding site and influence enhancer activity at the locus. In conclusion, this study has identified a biologically plausible genetic variant associated specifically with AAA, and we suggest that this variant has a possible functional role in LRP1 expression

    Search for dark matter produced in association with bottom or top quarks in √s = 13 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for weakly interacting massive particle dark matter produced in association with bottom or top quarks is presented. Final states containing third-generation quarks and miss- ing transverse momentum are considered. The analysis uses 36.1 fb−1 of proton–proton collision data recorded by the ATLAS experiment at √s = 13 TeV in 2015 and 2016. No significant excess of events above the estimated backgrounds is observed. The results are in- terpreted in the framework of simplified models of spin-0 dark-matter mediators. For colour- neutral spin-0 mediators produced in association with top quarks and decaying into a pair of dark-matter particles, mediator masses below 50 GeV are excluded assuming a dark-matter candidate mass of 1 GeV and unitary couplings. For scalar and pseudoscalar mediators produced in association with bottom quarks, the search sets limits on the production cross- section of 300 times the predicted rate for mediators with masses between 10 and 50 GeV and assuming a dark-matter mass of 1 GeV and unitary coupling. Constraints on colour- charged scalar simplified models are also presented. Assuming a dark-matter particle mass of 35 GeV, mediator particles with mass below 1.1 TeV are excluded for couplings yielding a dark-matter relic density consistent with measurements

    ATLAS Run 1 searches for direct pair production of third-generation squarks at the Large Hadron Collider

    Get PDF

    Charged-particle distributions at low transverse momentum in s=13\sqrt{s} = 13 TeV pppp interactions measured with the ATLAS detector at the LHC

    Get PDF
    corecore