155 research outputs found

    The incidence of varicella and herpes zoster in Massachusetts as measured by the Behavioral Risk Factor Surveillance System (BRFSS) during a period of increasing varicella vaccine coverage, 1998–2003

    Get PDF
    BACKGROUND: The authors sought to monitor the impact of widespread varicella vaccination on the epidemiology of varicella and herpes zoster. While varicella incidence would be expected to decrease, mathematical models predict an initial increase in herpes zoster incidence if re-exposure to varicella protects against reactivation of the varicella zoster virus. METHODS: In 1998–2003, as varicella vaccine uptake increased, incidence of varicella and herpes zoster in Massachusetts was monitored using the random-digit-dial Behavioral Risk Factor Surveillance System. RESULTS: Between 1998 and 2003, varicella incidence declined from 16.5/1,000 to 3.5/1,000 (79%) overall with ≥66% decreases for all age groups except adults (27% decrease). Age-standardized estimates of overall herpes zoster occurrence increased from 2.77/1,000 to 5.25/1,000 (90%) in the period 1999–2003, and the trend in both crude and adjusted rates was highly significant (p < 0.001). Annual age-specific rates were somewhat unstable, but all increased, and the trend was significant for the 25–44 year and 65+ year age groups. CONCLUSION: As varicella vaccine coverage in children increased, the incidence of varicella decreased and the occurrence of herpes zoster increased. If the observed increase in herpes zoster incidence is real, widespread vaccination of children is only one of several possible explanations. Further studies are needed to understand secular trends in herpes zoster before and after use of varicella vaccine in the United States and other countries

    Varicella: epidemiological aspects and vaccination coverage in the Veneto Region

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>With the control of many infections through national vaccination programmes, varicella is currently the most widespread preventable childhood disease in industrialized nations. In 2005 varicella vaccination was added to the Veneto Region routine immunization schedule for all children at 14 months of age and 12 year-old susceptible adolescents through an active and a free of charge offer. To evaluate parameters at the start of the programme, we conducted a study to describe the epidemiology of varicella infection and coverage rates for varicella vaccine in the Veneto Region (North-East Italy).</p> <p>Methods</p> <p>We examined incidence rates and median age of case patients in the Veneto Region for 2000-2007 period using two data sources: the mandatory notification of infections diseases and the Italian Paediatric Sentinel Surveillance System of Vaccine Preventable Diseases. Corrected coverage rates were calculated from data supplied by the Public Health and Screening Section of the Regional Department for Prevention.</p> <p>Results</p> <p>In the Veneto Region from 2000 to 2007, a total of 99,351 varicella cases were reported through mandatory notifications, mostly in children under 15 years of age. The overall standardised annual incidence ranged from 2.0 to 3.3 per 1,000 population, with fluctuations from year to year. The analysis by geographic area showed a similar monthly incidence rate in Italy and in the Veneto Region. The vaccination average adherence rate was 8.2% in 2004 cohort, 63.5% in 2005 cohort and 86.5% in 2006 cohort. Corrected coverage rates were 8.1% in 2004 cohort, 59.9% in 2005 cohort and 70.0% in 2006 cohort, respectively.</p> <p>Conclusion</p> <p>Data from passive and active surveillance systems confirm that varicella is a common disease which each year affects a large proportion of the population, mainly children. Uptake of the varicella vaccination programme was strikingly good with average coverage rates of about 70% after only 3 years. Sustained implementation of existing vaccine policies is needed to warrant any significant reduction of varicella incidence in the Veneto Region. Continued surveillance will be important to monitor the impact of the recently introduced mass vaccination policy.</p

    Constraints on cosmic strings using data from the first Advanced LIGO observing run

    Get PDF
    Cosmic strings are topological defects which can be formed in grand unified theory scale phase transitions in the early universe. They are also predicted to form in the context of string theory. The main mechanism for a network of Nambu-Goto cosmic strings to lose energy is through the production of loops and the subsequent emission of gravitational waves, thus offering an experimental signature for the existence of cosmic strings. Here we report on the analysis conducted to specifically search for gravitational-wave bursts from cosmic string loops in the data of Advanced LIGO 2015-2016 observing run (O1). No evidence of such signals was found in the data, and as a result we set upper limits on the cosmic string parameters for three recent loop distribution models. In this paper, we initially derive constraints on the string tension Gμ and the intercommutation probability, using not only the burst analysis performed on the O1 data set but also results from the previously published LIGO stochastic O1 analysis, pulsar timing arrays, cosmic microwave background and big-bang nucleosynthesis experiments. We show that these data sets are complementary in that they probe gravitational waves produced by cosmic string loops during very different epochs. Finally, we show that the data sets exclude large parts of the parameter space of the three loop distribution models we consider

    Full band all-sky search for periodic gravitational waves in the O1 LIGO data

    Get PDF
    We report on a new all-sky search for periodic gravitational waves in the frequency band 475–2000 Hz and with a frequency time derivative in the range of ½−1.0; þ0.1 × 10−8 Hz=s. Potential signals could be produced by a nearby spinning and slightly nonaxisymmetric isolated neutron star in our Galaxy. This search uses the data from Advanced LIGO’s first observational run O1. No gravitational-wave signals were observed, and upper limits were placed on their strengths. For completeness, results from the separately published low-frequency search 20–475 Hz are included as well. Our lowest upper limit on worst-case (linearly polarized) strain amplitude h0 is ∼4 × 10−25 near 170 Hz, while at the high end of our frequency range, we achieve a worst-case upper limit of 1.3 × 10−24. For a circularly polarized source (most favorable orientation), the smallest upper limit obtained is ∼1.5 × 10−25

    Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA

    Get PDF
    We present possible observing scenarios for the Advanced LIGO, Advanced Virgo and KAGRA gravitational-wave detectors over the next decade, with the intention of providing information to the astronomy community to facilitate planning for multi-messenger astronomy with gravitational waves. We estimate the sensitivity of the network to transient gravitational-wave signals, and study the capability of the network to determine the sky location of the source. We report our findings for gravitational-wave transients, with particular focus on gravitational-wave signals from the inspiral of binary neutron star systems, which are the most promising targets for multi-messenger astronomy. The ability to localize the sources of the detected signals depends on the geographical distribution of the detectors and their relative sensitivity, and 90% credible regions can be as large as thousands of square degrees when only two sensitive detectors are operational. Determining the sky position of a significant fraction of detected signals to areas of 5– 20 deg2 requires at least three detectors of sensitivity within a factor of ∼2 of each other and with a broad frequency bandwidth. When all detectors, including KAGRA and the third LIGO detector in India, reach design sensitivity, a significant fraction of gravitational-wave signals will be localized to a few square degrees by gravitational-wave observations alone

    Directional Limits on Persistent Gravitational Waves from Advanced LIGO’s First Observing Run

    Get PDF
    We employ gravitational-wave radiometry to map the stochastic gravitational wave background expected from a variety of contributing mechanisms and test the assumption of isotropy using data from the Advanced Laser Interferometer Gravitational Wave Observatory’s (aLIGO) first observing run. We also search for persistent gravitational waves from point sources with only minimal assumptions over the 20–1726 Hz frequency band. Finding no evidence of gravitational waves from either point sources or a stochastic background, we set limits at 90% confidence. For broadband point sources, we report upper limits on the gravitational wave energy flux per unit frequency in the range Fα;ΘðfÞ < ð0.1–56Þ × 10−8 erg cm−2 s−1 Hz−1ðf=25 HzÞα−1 depending on the sky location Θ and the spectral power index α. For extended sources, we report upper limits on the fractional gravitational wave energy density required to close the Universe of Ωðf; ΘÞ < ð0.39–7.6Þ × 10−8 sr−1ðf=25 HzÞα depending on Θ and α. Directed searches for narrowband gravitational waves from astrophysically interesting objects (Scorpius X-1, Supernova 1987 A, and the Galactic Center) yield median frequency-dependent limits on strain amplitude of h0 < ð6.7; 5.5; and 7.0Þ × 10−25, respectively, at the most sensitive detector frequencies between 130–175 Hz. This represents a mean improvement of a factor of 2 across the band compared to previous searches of this kind for these sky locations, considering the different quantities of strain constrained in each case

    Factors associated with initiation and completion of the quadrivalent human papillomavirus vaccine series in an ontario cohort of grade 8 girls

    Get PDF
    Abstract Background Although over a hundred million dollars have been invested in offering free quadrivalent human papillomavirus (HPV) vaccination to young girls in Ontario, there continues to be very little information about its usage. In order to successfully guide future HPV vaccine programming, it is important to monitor HPV vaccine use and determine factors associated with use in this population. Methods Linking administrative health and immunization databases, we conducted a population-based, retrospective cohort study of girls eligible for Ontario's Grade 8 HPV vaccination program in Kingston, Frontenac, Lennox, and Addington. We determined the proportion of girls who initiated (at least one dose) and completed (all three doses) the vaccination series overall and according to socio-demographics, vaccination history, health services utilization, medical history, and program year. Multivariable logistic regression was used to estimate the strength of association between individual factors and initiation and completion, adjusted for all other factors. Results We identified a cohort of 2519 girls, 56.6% of whom received at least one dose of the HPV vaccine. Among vaccinated girls, 85.3% received all three doses. Vaccination history was the strongest predictor of initiation in that girls who received the measles-mumps-rubella, meningococcal C, and hepatitis B vaccines were considerably more likely to also receive the HPV vaccine (odds ratio 4.89; 95% confidence interval 4.04-5.92). Nevertheless, HPV vaccine uptake was more than 20% lower than that of these other vaccines. In addition, while series initiation was not influenced by income, series completion was. In particular, girls of low income were the least likely to receive all three indicated doses of the HPV vaccine (odds ratio 0.45; 95% confidence interval 0.28-0.72). Conclusions The current low level of HPV vaccine acceptance in Kingston, Frontenac, Lennox, and Addington will likely have important implications in terms of the health benefits and cost-effectiveness of its publicly funded program. We identified important factors associated with series initiation and completion that should be considered in efforts to improve HPV vaccine use in this population

    GWTC-1: A Gravitational-Wave Transient Catalog of Compact Binary Mergers Observed by LIGO and Virgo during the First and Second Observing Runs

    Get PDF
    We present the results from three gravitational-wave searches for coalescing compact binaries with component masses above 1  M⊙ during the first and second observing runs of the advanced gravitational-wave detector network. During the first observing run (O1), from September 12, 2015 to January 19, 2016, gravitational waves from three binary black hole mergers were detected. The second observing run (O2), which ran from November 30, 2016 to August 25, 2017, saw the first detection of gravitational waves from a binary neutron star inspiral, in addition to the observation of gravitational waves from a total of seven binary black hole mergers, four of which we report here for the first time: GW170729, GW170809, GW170818, and GW170823. For all significant gravitational-wave events, we provide estimates of the source properties. The detected binary black holes have total masses between 18.6−0.7+3.2  M⊙ and 84.4−11.1+15.8  M⊙ and range in distance between 320−110+120 and 2840−1360+1400  Mpc. No neutron star-black hole mergers were detected. In addition to highly significant gravitational-wave events, we also provide a list of marginal event candidates with an estimated false-alarm rate less than 1 per 30 days. From these results over the first two observing runs, which include approximately one gravitational-wave detection per 15 days of data searched, we infer merger rates at the 90% confidence intervals of 110−3840  Gpc−3 y−1 for binary neutron stars and 9.7−101  Gpc−3 y−1 for binary black holes assuming fixed population distributions and determine a neutron star-black hole merger rate 90% upper limit of 610  Gpc−3 y−1
    corecore