362 research outputs found

    The Rise of the Resilient Local Authority?

    Get PDF
    The term resilience is increasingly being utilised within the study of public policy to depict how individuals, communities and organisations can adapt, cope, and ‘bounce back’ when faced with external shocks such as climate change, economic recession and cuts in public expenditure. In focussing on the local dimensions of the resilience debate, this article argues that the term can provide useful insights into how the challenges facing local authorities in the UK can be reformulated and reinterpreted. The article also distinguishes between resilience as ‘recovery’ and resilience as ‘transformation’, with the latter's focus on ‘bouncing forward’ from external shocks seen as offering a more radical framework within which the opportunities for local innovation and creativity can be assessed and explained. While also acknowledging some of the weaknesses of the resilience debate, the dangers of conceptual ‘stretching’, and the extent of local vulnerabilities, the article highlights a range of examples where local authorities – and crucially, local communities – have enhanced their adaptive capacity, within existing powers and responsibilities. From this viewpoint, some of the barriers to the development of resilient local government are not insurmountable, and can be overcome by ‘digging deep’ to draw upon existing resources and capabilities, promoting a strategic approach to risk, exhibiting greater ambition and imagination, and creating space for local communities to develop their own resilience

    Wellbeing: The Challenge of ‘Operationalising’ an Holistic Concept within a Reductionist Public Health Programme

    Get PDF
    Background Wellbeing is a concept that, whilst contested, recognises individual and wider social, economic, political and environmental contextual influences – and is of growing interest and relevance locally and globally. In this paper, we report on one aspect of an evaluative research study conducted on a public health programme in North West England. Aims Within the context of a process evaluation that explored the delivery of a public health programme and sought to increase understanding of how and why different approaches worked well or not so well, this paper focuses specifically on the concept of wellbeing, examining perceptions of multiple stakeholders. Methods Interviews and focus groups were undertaken with 52 stakeholders involved in managing and facilitating the programme and its composite projects and with 90 community members involved as project participants. Data were subjected to thematic analysis, cross‐check and refining. Findings Findings highlight stakeholders’ diverse understandings of wellbeing, the complex relationship between health and wellbeing, and the perceived dissonance between the holistic concept of wellbeing and the reductionist design of the programme. Conclusions Wellbeing was understood to be ‘more than health’ and ‘more than happiness’, concerned with effective functioning, sense of purpose and flourishing. Essentially holistic, wellbeing offers opportunities to transcend clinical/pathogenic conceptions of ‘health’ and resonate with individuals, communities and local authorities. This raises concerns about how wellbeing can be meaningfully realised without compromising the concept, particularly when programmes are structured in reductionist ways requiring monitoring against discrete outcomes. Implications for practice include: utilising wellbeing as a driver for cross‐cutting public health in challenging economic and organisational contexts; acknowledging that wellbeing is essentially social as well as individual; appreciating that wellbeing is experienced in relation to contexts and surroundings; and recognising that wellbeing defined in terms of individual happiness risks compromising the future wellbeing of societies and the planet

    Five Ways to Wellbeing: holistic narratives of public health programme participants

    Get PDF
    This paper reports on a study which formed part of a qualitative process evaluation of a wellbeing programme in North West England. The study used the biographic narrative interpretive method (BNIM) to undertake and analyse data from interviews with six participants from diverse projects within the programme. This generated rich case studies and spotlighted cross-case commonalities, building understanding of how the programme achieved its effects. We present findings using the Five Ways to Wellbeing framework, presenting one abridged ‘case’ and summarising cross-cutting themes. We explore how BNIM gives insight into the psychosocial complexity of wellbeing, building understanding of its holistic and dynamic nature, and then highlight the flexibility, resonance and widespread appeal of Five Ways to Wellbeing. In concluding, we argue that by enabling participants to tell their own stories of participation in the different projects, we gain a more authentic understanding of the ‘whole’ story of how involvement has affected wellbeing. Such approaches are crucial as wellbeing becomes a central concept in global health policy and promotion

    Dieting practices, weight perceptions, and body composition: A comparison of normal weight, overweight, and obese college females

    Get PDF
    BACKGROUND: Of concern to health educators is the suggestion that college females practice diet and health behaviors that contradict the 2005 dietary guidelines for Americans. In this regard, there remain gaps in the research related to dieting among college females. Namely, do normal weight individuals diet differently from those who are overweight or obese, and are there dieting practices used by females that can be adapted to promote a healthy body weight? Since it is well recognized that females diet, this study seeks to determine the dieting practices used among normal, overweight, and obese college females (do they diet differently) and identify dieting practices that could be pursued to help these females more appropriately achieve and maintain a healthy body weight. METHODS: A total of 185 female college students aged 18 to 24 years participated in this study. Height, weight, waist and hip circumferences, and skinfold thickness were measured to assess body composition. Surveys included a dieting practices questionnaire and a 30-day physical activity recall. Participants were classified according to body mass index (BMI) as normal weight (n = 113), overweight (n = 35), or obese (n = 21). Data were analyzed using JMP IN® software. Descriptive statistics included means, standard deviations, and frequency. Subsequent data analysis involved Pearson X(2 )and one-way analysis of variance with comparison for all pairs that were significantly different using Tukey-Kramer honestly significant difference test. RESULTS: Outcomes of this study indicate the majority of participants (83%) used dieting for weight loss and believed they would be 2% to 6% greater than current weight if they did not diet; normal weight, overweight, and obese groups perceived attractive weight to be 94%, 85%, and 74%, respectively, of current weight; 80% of participants reported using physical activity to control weight, although only 19% exercised at a level that would promote weight loss; only two of 15 dieting behaviors assessed differed in terms of prevalence of use among groups, which were consciously eating less than you want (44% normal weight, 57% overweight, 81% obese) and using artificial sweeteners (31% normal weight and overweight, 5% obese); and the most prevalent explicit maladaptive weight loss behavior was smoking cigarettes (used by 9% of participants) and most unhealthy was skipping breakfast (32%). CONCLUSION: Collectively, results indicate female college students, regardless of weight status, would benefit from open discussions with health educators regarding healthy and effective dieting practices to achieve/maintain a healthy body weight. The results are subject to replication among high school, middle-aged, and older females

    Constraints on cosmic strings using data from the first Advanced LIGO observing run

    Get PDF
    Cosmic strings are topological defects which can be formed in grand unified theory scale phase transitions in the early universe. They are also predicted to form in the context of string theory. The main mechanism for a network of Nambu-Goto cosmic strings to lose energy is through the production of loops and the subsequent emission of gravitational waves, thus offering an experimental signature for the existence of cosmic strings. Here we report on the analysis conducted to specifically search for gravitational-wave bursts from cosmic string loops in the data of Advanced LIGO 2015-2016 observing run (O1). No evidence of such signals was found in the data, and as a result we set upper limits on the cosmic string parameters for three recent loop distribution models. In this paper, we initially derive constraints on the string tension Gμ and the intercommutation probability, using not only the burst analysis performed on the O1 data set but also results from the previously published LIGO stochastic O1 analysis, pulsar timing arrays, cosmic microwave background and big-bang nucleosynthesis experiments. We show that these data sets are complementary in that they probe gravitational waves produced by cosmic string loops during very different epochs. Finally, we show that the data sets exclude large parts of the parameter space of the three loop distribution models we consider

    Full band all-sky search for periodic gravitational waves in the O1 LIGO data

    Get PDF
    We report on a new all-sky search for periodic gravitational waves in the frequency band 475–2000 Hz and with a frequency time derivative in the range of ½−1.0; þ0.1 × 10−8 Hz=s. Potential signals could be produced by a nearby spinning and slightly nonaxisymmetric isolated neutron star in our Galaxy. This search uses the data from Advanced LIGO’s first observational run O1. No gravitational-wave signals were observed, and upper limits were placed on their strengths. For completeness, results from the separately published low-frequency search 20–475 Hz are included as well. Our lowest upper limit on worst-case (linearly polarized) strain amplitude h0 is ∼4 × 10−25 near 170 Hz, while at the high end of our frequency range, we achieve a worst-case upper limit of 1.3 × 10−24. For a circularly polarized source (most favorable orientation), the smallest upper limit obtained is ∼1.5 × 10−25

    Increasing the Astrophysical Reach of the Advanced Virgo Detector via the Application of Squeezed Vacuum States of Light

    Get PDF
    Current interferometric gravitational-wave detectors are limited by quantum noise over a wide range of their measurement bandwidth. One method to overcome the quantum limit is the injection of squeezed vacuum states of light into the interferometer’s dark port. Here, we report on the successful application of this quantum technology to improve the shot noise limited sensitivity of the Advanced Virgo gravitational-wave detector. A sensitivity enhancement of up to 3.2±0.1  dB beyond the shot noise limit is achieved. This nonclassical improvement corresponds to a 5%–8% increase of the binary neutron star horizon. The squeezing injection was fully automated and over the first 5 months of the third joint LIGO-Virgo observation run O3 squeezing was applied for more than 99% of the science time. During this period several gravitational-wave candidates have been recorded

    Directional Limits on Persistent Gravitational Waves from Advanced LIGO’s First Observing Run

    Get PDF
    We employ gravitational-wave radiometry to map the stochastic gravitational wave background expected from a variety of contributing mechanisms and test the assumption of isotropy using data from the Advanced Laser Interferometer Gravitational Wave Observatory’s (aLIGO) first observing run. We also search for persistent gravitational waves from point sources with only minimal assumptions over the 20–1726 Hz frequency band. Finding no evidence of gravitational waves from either point sources or a stochastic background, we set limits at 90% confidence. For broadband point sources, we report upper limits on the gravitational wave energy flux per unit frequency in the range Fα;ΘðfÞ < ð0.1–56Þ × 10−8 erg cm−2 s−1 Hz−1ðf=25 HzÞα−1 depending on the sky location Θ and the spectral power index α. For extended sources, we report upper limits on the fractional gravitational wave energy density required to close the Universe of Ωðf; ΘÞ < ð0.39–7.6Þ × 10−8 sr−1ðf=25 HzÞα depending on Θ and α. Directed searches for narrowband gravitational waves from astrophysically interesting objects (Scorpius X-1, Supernova 1987 A, and the Galactic Center) yield median frequency-dependent limits on strain amplitude of h0 < ð6.7; 5.5; and 7.0Þ × 10−25, respectively, at the most sensitive detector frequencies between 130–175 Hz. This represents a mean improvement of a factor of 2 across the band compared to previous searches of this kind for these sky locations, considering the different quantities of strain constrained in each case
    corecore