12 research outputs found

    CSF1R+ Macrophages Sustain Pancreatic Tumor Growth through T Cell Suppression and Maintenance of Key Gene Programs that Define the Squamous Subtype.

    Get PDF
    Pancreatic ductal adenocarcinoma (PDAC) is resistant to most therapies including single-agent immunotherapy and has a dense desmoplastic stroma, and most patients present with advanced metastatic disease. We reveal that macrophages are the dominant leukocyte population both in human PDAC stroma and autochthonous models, with an important functional contribution to the squamous subtype of human PDAC. We targeted macrophages in a genetic PDAC model using AZD7507, a potent selective inhibitor of CSF1R. AZD7507 caused shrinkage of established tumors and increased mouse survival in this difficult-to-treat model. Malignant cell proliferation diminished, with increased cell death and an enhanced T cell immune response. Loss of macrophages rewired other features of the TME, with global changes in gene expression akin to switching PDAC subtypes. These changes were markedly different to those elicited when neutrophils were targeted via CXCR2. These results suggest targeting the myeloid cell axis may be particularly efficacious in PDAC, especially with CSF1R inhibitors

    Portraiture: Inside Out

    Get PDF
    Catalog for the exhibition Portraiture: Inside Out held at the Seton Hall University Walsh Gallery, February 28 - April 1, 2011. Curated by Ruth Ballester, Whitney Fehl, and Lauren Thompson. Includes an essay by Ruth Ballester, Whitney Fehl, and Lauren Thompson. Includes color illustrations

    DC-ATLAS: a systems biology resource to dissect receptor specific signal transduction in dendritic cells

    Get PDF
    BACKGROUND: The advent of Systems Biology has been accompanied by the blooming of pathway databases. Currently pathways are defined generically with respect to the organ or cell type where a reaction takes place. The cell type specificity of the reactions is the foundation of immunological research, and capturing this specificity is of paramount importance when using pathway-based analyses to decipher complex immunological datasets. Here, we present DC-ATLAS, a novel and versatile resource for the interpretation of high-throughput data generated perturbing the signaling network of dendritic cells (DCs). RESULTS: Pathways are annotated using a novel data model, the Biological Connection Markup Language (BCML), a SBGN-compliant data format developed to store the large amount of information collected. The application of DC-ATLAS to pathway-based analysis of the transcriptional program of DCs stimulated with agonists of the toll-like receptor family allows an integrated description of the flow of information from the cellular sensors to the functional outcome, capturing the temporal series of activation events by grouping sets of reactions that occur at different time points in well-defined functional modules. CONCLUSIONS: The initiative significantly improves our understanding of DC biology and regulatory networks. Developing a systems biology approach for immune system holds the promise of translating knowledge on the immune system into more successful immunotherapy strategies

    mTOR-dependent translation amplifies microglia priming in aging mice.

    Get PDF
    peer reviewedMicroglia maintain homeostasis in the brain. However, with age, they become primed and respond more strongly to inflammatory stimuli. We show here that microglia from aged mice had upregulated mTOR complex 1 signaling controlling translation, as well as protein levels of inflammatory mediators. Genetic ablation of mTOR signaling showed a dual yet contrasting effect on microglia priming: it caused an NF-ÎşB-dependent upregulation of priming genes at the mRNA level; however, mice displayed reduced cytokine protein levels, diminished microglia activation, and milder sickness behavior. The effect on translation was dependent on reduced phosphorylation of 4EBP1, resulting in decreased binding of eIF4E to eIF4G. Similar changes were present in aged human microglia and in damage-associated microglia, indicating that upregulation of mTOR-dependent translation is an essential aspect of microglia priming in aging and neurodegeneration

    No evidence for TSLP pathway activity in human breast cancer

    No full text
    Thymic stromal lymphopoietin (TSLP) is an epithelial cell-derived cytokine that primes dendritic cells for Th2 induction. It has been implicated in different types of allergic diseases. Recent work suggested that TSLP could play an important role in the tumor microenvironment and influence tumor progression, in particular in breast cancer. In this study we systematically assessed the production of TSLP at the mRNA and protein levels in several human breast cancer cell lines, large-scale public transcriptomics data sets, and primary human breast tumors. We found that TSLP production was marginal, and concerned less than 10% of the tumors, with very low mRNA and protein levels. In most cases TSLP was undetectable and found to be expressed at lower levels in breast cancer as compared to normal breast tissue. Last, we could not detect any functional TSLP receptor (TSLPR) expression neither on hematopoietic cells nor on stromal cells within the primary tumor microenvironment. We conclude that TSLP-TSLPR pathway activity is not significantly detected within human breast cancer. Taken together, these observations do not support TSLP targeting in breast cancer

    CD30-Induced Signaling Is Absent in Hodgkin’s Cells but Present in Anaplastic Large Cell Lymphoma Cells

    No full text
    High CD30 expression in classical Hodgkin’s lymphoma and anaplastic large cell lymphoma (ALCL) suggests an important pathogenic role of this cytokine receptor. To test this hypothesis, we investigated CD30 signaling in Hodgkin’s and ALCL cell lines by different approaches: 1) CD30 stimulation, 2) CD30 down-regulation, and 3) a combination of both. The effects were determined at the RNA (microarray and real-time quantitative RT-PCR), protein (electrophoretic mobility shift analysis, immunoblot, and flow cytometry), and cellular/functional (proliferation and apoptosis) levels. We demonstrate that Hodgkin’s cells are virtually CD30 unresponsive. Neither CD30 stimulation nor CD30 silencing of Hodgkin’s cells had any significant effect. In contrast, CD30 stimulation of ALCL cells activated nuclear transcription factor-κB (NF-κB), induced major transcriptional changes, and decreased proliferation. These effects could be abrogated by down-regulation of CD30. Stimulation of CD30 in ALCL cells, stably transfected with a dominant-negative NF-κB inhibitor, induced pronounced caspase activation and massive apoptosis. Our data indicate that 1) CD30 signaling is not effective in Hodgkin’s cell lines but is effective in ALCL cell lines, 2) CD30 is probably not significantly involved in the pathogenesis of classical Hodgkin’s lymphoma, and 3) CD30 stimulation triggers two competing effects in ALCL cells, namely activation of caspases and NF-κB-mediated survival. These data suggest that CD30-targeted therapy in ALCL should be combined with NF-κB inhibitors to induce effective cell killing
    corecore