39 research outputs found

    Micrometeoroid Events in LISA Pathfinder

    Get PDF
    The zodiacal dust complex, a population of dust and small particles that pervades the Solar System, provides important insight into the formation and dynamics of planets, comets, asteroids, and other bodies. Here we present a new set of data obtained using a novel technique: direct measurements of momentum transfer to a spacecraft from individual particle impacts. This technique is made possible by the extreme precision of the instruments flown on the LISA Pathfinder spacecraft, a technology demonstrator for a future space-based gravitational wave observatory that operated near the first Sun-Earth Lagrange point from early 2016 through Summer of 2017. Using a simple model of the impacts and knowledge of the control system, we show that it is possible to detect impacts and measure properties such as the transferred momentum (related to the particle's mass and velocity), direction of travel, and location of impact on the spacecraft. In this paper, we present the results of a systematic search for impacts during 4348 hours of Pathfinder data. We report a total of 54 candidates with momenta ranging from 0.2μNs\,\mu\textrm{Ns} to 230μNs\,\mu\textrm{Ns}. We furthermore make a comparison of these candidates with models of micrometeoroid populations in the inner solar system including those resulting from Jupiter-family comets, Oort-cloud comets, Hailey-type comets, and Asteroids. We find that our measured population is consistent with a population dominated by Jupiter-family comets with some evidence for a smaller contribution from Hailey-type comets. This is in agreement with consensus models of the zodiacal dust complex in the momentum range sampled by LISA Pathfinder.Comment: 22 pages, 14 figures, accepted in Ap

    National identity predicts public health support during a global pandemic (vol 13, 517, 2022) : National identity predicts public health support during a global pandemic (Nature Communications, (2022), 13, 1, (517), 10.1038/s41467-021-27668-9)

    Get PDF
    Publisher Copyright: © The Author(s) 2022.In this article the author name ‘Agustin Ibanez’ was incorrectly written as ‘Augustin Ibanez’. The original article has been corrected.Peer reviewe

    National identity predicts public health support during a global pandemic

    Get PDF
    Changing collective behaviour and supporting non-pharmaceutical interventions is an important component in mitigating virus transmission during a pandemic. In a large international collaboration (Study 1, N = 49,968 across 67 countries), we investigated self-reported factors associated with public health behaviours (e.g., spatial distancing and stricter hygiene) and endorsed public policy interventions (e.g., closing bars and restaurants) during the early stage of the COVID-19 pandemic (April-May 2020). Respondents who reported identifying more strongly with their nation consistently reported greater engagement in public health behaviours and support for public health policies. Results were similar for representative and non-representative national samples. Study 2 (N = 42 countries) conceptually replicated the central finding using aggregate indices of national identity (obtained using the World Values Survey) and a measure of actual behaviour change during the pandemic (obtained from Google mobility reports). Higher levels of national identification prior to the pandemic predicted lower mobility during the early stage of the pandemic (r = −0.40). We discuss the potential implications of links between national identity, leadership, and public health for managing COVID-19 and future pandemics.publishedVersio

    The habitable exoplanet observatory (HabEx) mission concept study interim report

    Full text link
    For the first time in human history, technologies have matured sufficiently to enable a mission capable of discovering and characterizing habitable planets like Earth orbiting sunlike stars other than the Sun. At the same time, such a platform would enable unique science not possible from ground-based facilities. This science is broad and exciting, ranging from new investigations of our own solar system to a full range of astrophysics disciplines. The Habitable Exoplanet Observatory, or HabEx, is one of four studies currently being undertaken by NASA in preparation for the 2020 Astrophysics Decadal Survey. HabEx has been designed to be the Great Observatory of the 2030s, with community involvement through a competed and funded Guest Observer (GO) program. This interim report describes the HabEx baseline concept, which is a space-based 4-meter diameter telescope mission concept with ultraviolet (UV), optical, and near-infrared (near-IR) imaging and spectroscopy capabilities. More information on HabEx can be found at https://www.jpl.nasa.gov/habexPublished versio

    Author Correction: National identity predicts public health support during a global pandemic

    Get PDF
    Correction to: Nature Communications https://doi.org/10.1038/s41467-021-27668-9, published online 26 January 2022

    Impact of Performance Scaling on Mission Analysis for Gas-Fed Pulsed Plasma Thrusters *

    No full text
    An experimentally verified performance scaling model for gas-fed pulsed plasma thrusters (GFPPTs) is used as part of a mission study for refuelable satellites. Orbit raising, orbit phasing, and inclination change maneuvers are included in the study where payload mass fraction is evaluated as a function of specific impulse, trip time, and ∆V. For a GFPPT operating at a fixed thrust level, the power level and power supply mass is found to be nearly independent of exhaust velocity. The optimum value of specific impulse for the maximum payload mass is shown to be >5000 s for many GFPPT designs. The effects of refueling on satellite payload mass, total launch mass requirements, and total ∆V capability are also shown to favor higher specific impulse propulsion systems. The study results indicate that a GFPPT is required to have a thrust-to-power ratio >10 µN/W to produce trip times similar to other water-based electric propulsion systems with lower specific impulse values. The study results are also used to determine an appropriate path for technology development of GFPPTs

    Microthrust Propulsion of the LISA Mission

    No full text
    We present the most recent propulsion requirements for the Laser Interferometer Space Antenna (LISA) Mission and describe potential microth ruster technology that can meet these requirements. LISA consists of three spacecraft in heliocentric orbits, forming a triangle with 5x l 0 (exp 6) km sides that are the arms of three Michelson-type interferometers. Reflective proof masses provide the reference surfaces at the end of the interferometer arms as part of the Gravitational Referenc e Sensor (GRS) designed to detect gravitational waves. The microthrus t propulsion system will be part of the Disturbance Reduction System (DRS), which is responsible for maintaining each spacecraft position w ithin approximately 10 nm around the proof masses. To provide the nec essary sensitivity, the GRS must not experience spurious acceleration s >15 (exp -10) m/ s(exp 2) in the 0.1 mHz to 1 Hz bandwidth, requiring precision formation flying and drag-free operation of the LISA spa cecraft. This leads to the following microthruster performance requir ements: a thrust range of 2-30 Micro N, a thrust resolution < 0.1 Mic ro N, and thrust noise <0.1 Hz(exp -1/2) over the LISA measurement bandwidth. The microthruster must provide this performance for 5 years c ontinuously, contain 10 years worth of propellant, and not disrupt th e science measurements. Potential microthruster technologies include Colloid, Field Emission Electric Propulsion (FEEP), and precision cold gas microthrusters. Each of these technologies is described in detai l with focus on the NASA microthruster development of the Busek Collo id Micro-Newton Thruster (CMNT)

    Exploring Mission Concepts with the JPL Innovation Foundry A-Team

    No full text
    The JPL Innovation Foundry has established a new approach for exploring, developing, and evaluating early concepts called the A-Team. The A-Team combines innovative collaborative methods with subject matter expertise and analysis tools to help mature mission concepts. Science, implementation, and programmatic elements are all considered during an A-Team study. Methods are grouped by Concept Maturity Level (CML), from 1 through 3, including idea generation and capture (CML 1), initial feasibility assessment (CML 2), and trade space exploration (CML 3). Methods used for each CML are presented, and the key team roles are described from two points of view: innovative methods and technical expertise. A-Team roles for providing innovative methods include the facilitator, study lead, and assistant study lead. A-Team roles for providing technical expertise include the architect, lead systems engineer, and integration engineer. In addition to these key roles, each A-Team study is uniquely staffed to match the study topic and scope including subject matter experts, scientists, technologists, flight and instrument systems engineers, and program managers as needed. Advanced analysis and collaborative engineering tools (e.g. cost, science traceability, mission design, knowledge capture, study and analysis support infrastructure) are also under development for use in A-Team studies and will be discussed briefly. The A-Team facilities provide a constructive environment for innovative ideas from all aspects of mission formulation to eliminate isolated studies and come together early in the development cycle when they can provide the biggest impact. This paper provides an overview of the A-Team, its study processes, roles, methods, tools and facilities
    corecore