5,129 research outputs found

    Charged particle rapidity distributions at RHIC

    Get PDF
    Using a multiphase transport model (AMPT), which includes both initial partonic and final hadronic scattering, we study the rapidity distributions of charged particles such as protons, antiprotons, pions and kaons in central Au+Au collisions at s\sqrt s = 56, 130, and 200 AGeV at RHIC. We find that present data at 56 and 130 AGeV by the PHOBOS collaboration are consistent with a rather weak jet quenching in the initial dense matter. We also find that the antiproton to proton ratio at mid-rapidity increases appreciably with s\sqrt s, indicating the approach to a nearly baryon-antibaryon symmetric matter in high energy collisions. Furthermore, the K+/π+K^+/\pi^+ ratio is almost constant within the energy range studied here, suggesting the approximate chemical equilibrium for strangeness production in these collisions

    J/psi suppression in ultrarelativistic nuclear collisions

    Full text link
    Using a multiphase transport model, we study the relative importance of J/psi suppression mechanisms due to plasma screening, gluon scattering, and hadron absorption in heavy ion collisions at the Relativistic Heavy Ion Collider. We find that for collisions between heavy nuclei such as Au+Au, both plasma screening and gluon scattering are important. As a result, the effect due to absorption by hadrons becomes relatively minor. The final J/psi survival probability in these collisions is only a few percent. In the case of collisions between light nuclei such as S+S, the effect of plasma screening is, however, negligible in spite of the initial high parton density. The final J/psi survival probability thus remains appreciable after comparable absorption effects due to gluons and hadrons

    Thermal Dileptons at LHC

    Get PDF
    We predict dilepton invariant-mass spectra for central 5.5 ATeV Pb-Pb collisions at LHC. Hadronic emission in the low-mass region is calculated using in-medium spectral functions of light vector mesons within hadronic many-body theory. In the intermediate-mass region thermal radiation from the Quark-Gluon Plasma, evaluated perturbatively with hard-thermal loop corrections, takes over. An important source over the entire mass range are decays of correlated open-charm hadrons, rendering the nuclear modification of charm and bottom spectra a critical ingredient.Comment: 2 pages, 2 figures, contributed to Workshop on Heavy Ion Collisions at the LHC: Last Call for Predictions, Geneva, Switzerland, 14 May - 8 Jun 2007 v2: acknowledgment include

    Elliptic flow from two- and four-particle correlations in Au + Au collisions at sqrt{s_{NN}} = 130 GeV

    Get PDF
    Elliptic flow holds much promise for studying the early-time thermalization attained in ultrarelativistic nuclear collisions. Flow measurements also provide a means of distinguishing between hydrodynamic models and calculations which approach the low density (dilute gas) limit. Among the effects that can complicate the interpretation of elliptic flow measurements are azimuthal correlations that are unrelated to the reaction plane (non-flow correlations). Using data for Au + Au collisions at sqrt{s_{NN}} = 130 GeV from the STAR TPC, it is found that four-particle correlation analyses can reliably separate flow and non-flow correlation signals. The latter account for on average about 15% of the observed second-harmonic azimuthal correlation, with the largest relative contribution for the most peripheral and the most central collisions. The results are also corrected for the effect of flow variations within centrality bins. This effect is negligible for all but the most central bin, where the correction to the elliptic flow is about a factor of two. A simple new method for two-particle flow analysis based on scalar products is described. An analysis based on the distribution of the magnitude of the flow vector is also described.Comment: minor text change

    Suppression of High Transverse Momentum π0\pi^0 Spectra in Au+Au Collisions at RHIC

    Full text link
    Au+Au, s1/2=200s^{1/2} = 200 A GeV measurements at RHIC, obtained with the PHENIX, STAR, PHOBOS and BRAHMS detectors, have all indicated a suppression of neutral pion production, relative to an appropriately normalized NN level. For central collisions and vanishing pseudo-rapidity these experiments exhibit suppression in charged meson production, especially at medium to large transverse momenta. In the PHENIX experiment similar behavior has been reported for π0\pi^0 spectra. In a recent work on the simpler D+Au interaction, to be considered perhaps as a tune-up for Au+Au, we reported on a pre-hadronic cascade mechanism which explains the mixed observation of moderately reduced pp_\perp suppression at higher pseudo-rapidity as well as the Cronin enhancement at mid-rapidity. Here we present the extension of this work to the more massive ion-ion collisions. Our major thesis is that much of the suppression is generated in a late stage cascade of colourless pre-hadrons produced after an initial short-lived coloured phase. We present a pQCD argument to justify this approach and to estimate the time duration τp\tau_p of this initial phase. Of essential importance is the brevity in time of the coloured phase existence relative to that of the strongly interacting pre-hadron phase. The split into two phases is of course not sharp in time, but adequate for treating the suppression of moderate and high pp_\perp mesons.Comment: 19 pages, 10 figure

    Single hadron response measurement and calorimeter jet energy scale uncertainty with the ATLAS detector at the LHC

    Get PDF
    The uncertainty on the calorimeter energy response to jets of particles is derived for the ATLAS experiment at the Large Hadron Collider (LHC). First, the calorimeter response to single isolated charged hadrons is measured and compared to the Monte Carlo simulation using proton-proton collisions at centre-of-mass energies of sqrt(s) = 900 GeV and 7 TeV collected during 2009 and 2010. Then, using the decay of K_s and Lambda particles, the calorimeter response to specific types of particles (positively and negatively charged pions, protons, and anti-protons) is measured and compared to the Monte Carlo predictions. Finally, the jet energy scale uncertainty is determined by propagating the response uncertainty for single charged and neutral particles to jets. The response uncertainty is 2-5% for central isolated hadrons and 1-3% for the final calorimeter jet energy scale.Comment: 24 pages plus author list (36 pages total), 23 figures, 1 table, submitted to European Physical Journal

    Measurement of Λ4H\rm ^4_{\Lambda}H and Λ4He\rm ^4_{\Lambda}He binding energy in Au+Au collisions at sNN\sqrt{s_\mathrm{NN}} = 3 GeV

    Full text link
    Measurements of mass and Λ\Lambda binding energy of Λ4H\rm ^4_{\Lambda}H and Λ4He\rm ^4_{\Lambda}He in Au+Au collisions at sNN=3\sqrt{s_{_{\rm NN}}}=3 GeV are presented, with an aim to address the charge symmetry breaking (CSB) problem in hypernuclei systems with atomic number A = 4. The Λ\Lambda binding energies are measured to be 2.22±0.06(stat.)±0.14(syst.)\rm 2.22\pm0.06(stat.) \pm0.14(syst.) MeV and 2.38±0.13(stat.)±0.12(syst.)\rm 2.38\pm0.13(stat.) \pm0.12(syst.) MeV for Λ4H\rm ^4_{\Lambda}H and Λ4He\rm ^4_{\Lambda}He, respectively. The measured Λ\Lambda binding-energy difference is 0.16±0.14(stat.)±0.10(syst.)\rm 0.16\pm0.14(stat.)\pm0.10(syst.) MeV for ground states. Combined with the γ\gamma-ray transition energies, the binding-energy difference for excited states is 0.16±0.14(stat.)±0.10(syst.)\rm -0.16\pm0.14(stat.)\pm0.10(syst.) MeV, which is negative and comparable to the value of the ground states within uncertainties. These new measurements on the Λ\Lambda binding-energy difference in A = 4 hypernuclei systems are consistent with the theoretical calculations that result in ΔBΛ4(1exc+)ΔBΛ4(0g.s.+)<0\rm \Delta B_{\Lambda}^4(1_{exc}^{+})\approx -\Delta B_{\Lambda}^4(0_{g.s.}^{+})<0 and present a new method for the study of CSB effect using relativistic heavy-ion collisions.Comment: 8 pages, 5 figure

    Observation of the electromagnetic field effect via charge-dependent directed flow in heavy-ion collisions at the Relativistic Heavy Ion Collider

    Full text link
    The deconfined quark-gluon plasma (QGP) created in relativistic heavy-ion collisions enables the exploration of the fundamental properties of matter under extreme conditions. Non-central collisions can produce strong magnetic fields on the order of 101810^{18} Gauss, which offers a probe into the electrical conductivity of the QGP. In particular, quarks and anti-quarks carry opposite charges and receive contrary electromagnetic forces that alter their momenta. This phenomenon can be manifested in the collective motion of final-state particles, specifically in the rapidity-odd directed flow, denoted as v1(y)v_1(\mathsf{y}). Here we present the charge-dependent measurements of dv1/dydv_1/d\mathsf{y} near midrapidities for π±\pi^{\pm}, K±K^{\pm}, and p(pˉ)p(\bar{p}) in Au+Au and isobar (4496_{44}^{96}Ru+4496_{44}^{96}Ru and 4096_{40}^{96}Zr+4096_{40}^{96}Zr) collisions at sNN=\sqrt{s_{\rm NN}}= 200 GeV, and in Au+Au collisions at 27 GeV, recorded by the STAR detector at the Relativistic Heavy Ion Collider. The combined dependence of the v1v_1 signal on collision system, particle species, and collision centrality can be qualitatively and semi-quantitatively understood as several effects on constituent quarks. While the results in central events can be explained by the uu and dd quarks transported from initial-state nuclei, those in peripheral events reveal the impacts of the electromagnetic field on the QGP. Our data put valuable constraints on the electrical conductivity of the QGP in theoretical calculations

    Hunt for new phenomena using large jet multiplicities and missing transverse momentum with ATLAS in 4.7 fb−1 of s√=7TeV proton-proton collisions

    Get PDF
    Results are presented of a search for new particles decaying to large numbers of jets in association with missing transverse momentum, using 4.7 fb−1 of pp collision data at s√=7TeV collected by the ATLAS experiment at the Large Hadron Collider in 2011. The event selection requires missing transverse momentum, no isolated electrons or muons, and from ≥6 to ≥9 jets. No evidence is found for physics beyond the Standard Model. The results are interpreted in the context of a MSUGRA/CMSSM supersymmetric model, where, for large universal scalar mass m 0, gluino masses smaller than 840 GeV are excluded at the 95% confidence level, extending previously published limits. Within a simplified model containing only a gluino octet and a neutralino, gluino masses smaller than 870 GeV are similarly excluded for neutralino masses below 100 GeV

    Measurements of Higgs boson production and couplings in diboson final states with the ATLAS detector at the LHC

    Get PDF
    Measurements are presented of production properties and couplings of the recently discovered Higgs boson using the decays into boson pairs, H →γ γ, H → Z Z∗ →4l and H →W W∗ →lνlν. The results are based on the complete pp collision data sample recorded by the ATLAS experiment at the CERN Large Hadron Collider at centre-of-mass energies of √s = 7 TeV and √s = 8 TeV, corresponding to an integrated luminosity of about 25 fb−1. Evidence for Higgs boson production through vector-boson fusion is reported. Results of combined fits probing Higgs boson couplings to fermions and bosons, as well as anomalous contributions to loop-induced production and decay modes, are presented. All measurements are consistent with expectations for the Standard Model Higgs boson
    corecore