4,484 research outputs found
Beam-Size Invariant Spectropolarimeters Using Gap-Plasmon Metasurfaces
Metasurfaces enable exceptional control over the light with surface-confined
planar components, offering the fascinating possibility of very dense
integration and miniaturization in photonics. Here, we design, fabricate and
experimentally demonstrate chip-size plasmonic spectropolarimeters for
simultaneous polarization state and wavelength determination.
Spectropolarimeters, consisting of three gap-plasmon phase-gradient
metasurfaces that occupy 120{\deg} circular sectors each, diffract normally
incident light to six predesigned directions, whose azimuthal angles are
proportional to the light wavelength, while contrasts in the corresponding
diffraction intensities provide a direct measure of the incident polarization
state through retrieval of the associated Stokes parameters. The
proof-of-concept 96-{\mu}m-diameter spectropolarimeter operating in the
wavelength range of 750-950nm exhibits the expected polarization selectivity
and high angular dispersion. Moreover, we show that, due to the circular-sector
design, polarization analysis can be conducted for optical beams of different
diameters without prior calibration, demonstrating thereby the beam-size
invariant functionality. The proposed spectropolarimeters are compact,
cost-effective, robust, and promise high-performance real-time polarization and
spectral measurements
Direct characterization of near-field coupling in gap plasmon-based metasurfaces
Metasurfaces based on gap surface-plasmon resonators allow one to arbitrarily
control the phase, amplitude and polarization of reflected light with high
efficiency. However, the performance of densely-packed metasurfaces is reduced,
often quite significantly, in comparison with simple analytical predictions. We
argue that this reduction is mainly because of the near-field coupling between
metasurface elements, which results in response from each element being
different from the one anticipated by design simulations, which are commonly
conducted for each individual element being placed in an artificial periodic
arrangement. In order to study the influence of near-field coupling, we
fabricate meta-elements of varying sizes arranged in quasi-periodic arrays so
that the immediate environment of same size elements is different for those
located in the middle and at the border of the arrays. We study the near-field
using a phase-resolved scattering-type scanning near-field optical microscopy
(s-SNOM) and conducting numerical simulations. By comparing the near-field maps
from elements of the same size but different placements we evaluate the
near-field coupling strength, which is found to be significant for large and
densely packed elements. This technique is quite generic and can be used
practically for any metasurface type in order to precisely measure the
near-field response from each individual element and identify malfunctioning
ones, providing feedback to their design and fabrication, thereby allowing one
to improve the efficiency of the whole metasurface
Near-field characterization of bound plasmonic modes in metal strip waveguides
Propagation of bound plasmon-polariton modes along 30-nm-thin gold strips on a silica substrate at the free-space wavelength of 1500 nm is investigated both theoretically and experimentally when decreasing the strip width from 1500 nm down to the aspect-ratio limited width of 30 nm, which ensures deep subwavelength mode confinement. The main mode characteristics (effective mode index, propagation length, and mode profile) are determined from the experimental amplitude- and phase-resolved near-field images for various strip widths (from 30 to 1500 nm), and compared to numerical simulations. The mode supported by the narrowest strip is found to be laterally confined within ~ 100 nm at the air side, indicating that the realistic limit for radiation nanofocusing in air using tapered metal strips is ~ λ/15
White Light Generation and Anisotropic Damage in Gold Films near Percolation Threshold
Strongly enhanced and confined electromagnetic fields generated in metal nanostructures upon illumination are exploited in many emerging technologies by either fabricating sophisticated nanostructures or synthesizing colloid nano particles. Here we study effects driven by field enhancement in vanishingly small gaps between gold islands in thin films near the electrically determined percolation threshold. Optical explorations using two-photon luminescence (TPL) and near-field microscopies reveals supercubic TPL power dependencies with white-light spectra, establishing unequivocally that the strongest TPL signals are generated close to the percolation threshold films, and occurrence of extremely confined (similar to 30 nm) and strongly enhanced (similar to 100 times) fields at the illumination wavelength. For linearly polarized and sufficiently powerful light, we observe pronounced optical damage with TPL images being sensitive to both wavelength and polarization of illuminating light. We relate these effects to thermally induced morphological changes observed with scanning electron microscopy images. Exciting physics involved in light interaction with near-percolation metal films along with their straightforward and scalable one-step fabrication procedure promises a wide range of fascinating developments and technological applications within diverse areas of modern nanotechnology, from biomolecule optical sensing to ultradense optical data storage
Boosting Local Field Enhancement by on-Chip Nanofocusing and Impedance-Matched Plasmonic Antennas
Strongly confined surface plasmon-polariton modes can be used for efficiently
delivering the electromagnetic energy to nano-sized volumes by reducing the
cross sections of propagating modes far beyond the diffraction limit, i.e., by
nanofocusing. This process results in significant local-field enhancement that
can advantageously be exploited in modern optical nanotechnologies, including
signal processing, biochemical sensing, imaging and spectroscopy. Here, we
propose, analyze, and experimentally demonstrate on-chip nanofocusing followed
by impedance-matched nanowire antenna excitation in the end-fire geometry at
telecom wavelengths. Numerical and experimental evidences of the efficient
excitation of dipole and quadrupole (dark) antenna modes are provided,
revealing underlying physical mechanisms and analogies with the operation of
plane-wave Fabry-P\'erot interferometers. The unique combination of efficient
nanofocusing and nanoantenna resonant excitation realized in our experiments
offers a major boost to the field intensity enhancement up to ,
with the enhanced field being evenly distributed over the gap volume of
, and promises thereby a variety of useful
on-chip functionalities within sensing, nonlinear spectroscopy and signal
processing
Measurement of the cross-section and charge asymmetry of bosons produced in proton-proton collisions at TeV with the ATLAS detector
This paper presents measurements of the and cross-sections and the associated charge asymmetry as a
function of the absolute pseudorapidity of the decay muon. The data were
collected in proton--proton collisions at a centre-of-mass energy of 8 TeV with
the ATLAS experiment at the LHC and correspond to a total integrated luminosity
of 20.2~\mbox{fb^{-1}}. The precision of the cross-section measurements
varies between 0.8% to 1.5% as a function of the pseudorapidity, excluding the
1.9% uncertainty on the integrated luminosity. The charge asymmetry is measured
with an uncertainty between 0.002 and 0.003. The results are compared with
predictions based on next-to-next-to-leading-order calculations with various
parton distribution functions and have the sensitivity to discriminate between
them.Comment: 38 pages in total, author list starting page 22, 5 figures, 4 tables,
submitted to EPJC. All figures including auxiliary figures are available at
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/STDM-2017-13
Search for squarks and gluinos with the ATLAS detector in final states with jets and missing transverse momentum using √s=8 TeV proton-proton collision data
A search for squarks and gluinos in final states containing high-p T jets, missing transverse momentum and no electrons or muons is presented. The data were recorded in 2012 by the ATLAS experiment in s√=8 TeV proton-proton collisions at the Large Hadron Collider, with a total integrated luminosity of 20.3 fb−1. Results are interpreted in a variety of simplified and specific supersymmetry-breaking models assuming that R-parity is conserved and that the lightest neutralino is the lightest supersymmetric particle. An exclusion limit at the 95% confidence level on the mass of the gluino is set at 1330 GeV for a simplified model incorporating only a gluino and the lightest neutralino. For a simplified model involving the strong production of first- and second-generation squarks, squark masses below 850 GeV (440 GeV) are excluded for a massless lightest neutralino, assuming mass degenerate (single light-flavour) squarks. In mSUGRA/CMSSM models with tan β = 30, A 0 = −2m 0 and μ > 0, squarks and gluinos of equal mass are excluded for masses below 1700 GeV. Additional limits are set for non-universal Higgs mass models with gaugino mediation and for simplified models involving the pair production of gluinos, each decaying to a top squark and a top quark, with the top squark decaying to a charm quark and a neutralino. These limits extend the region of supersymmetric parameter space excluded by previous searches with the ATLAS detector
- …
