5,574 research outputs found
ATM and Artemis promote homologous recombination of radiation-induced DNA double-strand breaks in G2
Homologous recombination (HR) and non‐homologous end joining (NHEJ) represent distinct pathways for repairing DNA double‐strand breaks (DSBs). Previous work implicated Artemis and ATM in an NHEJ‐dependent process, which repairs a defined subset of radiation‐induced DSBs in G1‐phase. Here, we show that in G2, as in G1, NHEJ represents the major DSB‐repair pathway whereas HR is only essential for repair of ∼15% of X‐ or γ‐ray‐induced DSBs. In addition to requiring the known HR proteins, Brca2, Rad51 and Rad54, repair of radiation‐induced DSBs by HR in G2 also involves Artemis and ATM suggesting that they promote NHEJ during G1 but HR during G2. The dependency for ATM for repair is relieved by depleting KAP‐1, providing evidence that HR in G2 repairs heterochromatin‐associated DSBs. Although not core HR proteins, ATM and Artemis are required for efficient formation of single‐stranded DNA and Rad51 foci at radiation‐induced DSBs in G2 with Artemis function requiring its endonuclease activity. We suggest that Artemis endonuclease removes lesions or secondary structures, which inhibit end resection and preclude the completion of HR or NHEJ
A seasonal cycle in the export of bottom water from the Weddell Sea
Dense water formed over the Antarctic continental shelf rapidly descends into the deep ocean where it spreads throughout the global ocean as Antarctic Bottom Water1, 2. The coldest and most voluminous component of this water mass is Weddell Sea bottom water1, 3, 4, 5, 6, 7. Here we present observations over eight years of the temperature and salinity stratification in the lowermost ocean southeast of the South Orkney Islands, marking the export of Weddell Sea bottom water. We observe a pronounced seasonal cycle in bottom temperatures, with a cold pulse in May/June and a warm one in October/November, but the timing of these phases varies each year. We detect the coldest bottom water in 1999 and 2002, whereas there was no cold phase in 2000. On the basis of current velocities and water mass characteristics, we infer that the pulses originate from the southwest Weddell Sea. We propose that the seasonal fluctuations of Weddell Sea bottom-water properties are governed by the seasonal cycle of the winds over the western margin of the Weddell Sea. Interannual fluctuations are linked to the variability of the wind-driven Weddell Sea gyre and hence to large-scale climate phenomena such as the Southern Annular Mode and El Niño/Southern Oscillation
Electrically controlled long-distance spin transport through an antiferromagnetic insulator
Spintronics uses spins, the intrinsic angular momentum of electrons, as an
alternative for the electron charge. Its long-term goal is in the development
of beyond-Moore low dissipation technology devices. Recent progress
demonstrated the long-distance transport of spin signals across ferromagnetic
insulators. Antiferromagnetically ordered materials are however the most common
class of magnetic materials with several crucial advantages over ferromagnetic
systems. In contrast to the latter, antiferromagnets exhibit no net magnetic
moment, which renders them stable and impervious to external fields. In
addition, they can be operated at THz frequencies. While fundamentally their
properties bode well for spin transport, previous indirect observations
indicate that spin transmission through antiferromagnets is limited to short
distances of a few nanometers. Here we demonstrate the long-distance, over tens
of micrometers, propagation of spin currents through hematite (\alpha-Fe2O3),
the most common antiferromagnetic iron oxide, exploiting the spin Hall effect
for spin injection. We control the spin current flow by the interfacial
spin-bias and by tuning the antiferromagnetic resonance frequency with an
external magnetic field. This simple antiferromagnetic insulator is shown to
convey spin information parallel to the compensated moment (N\'eel order) over
distances exceeding tens of micrometers. This newly-discovered mechanism
transports spin as efficiently as the net magnetic moments in the best-suited
complex ferromagnets. Our results pave the way to ultra-fast, low-power
antiferromagnet-insulator-based spin-logic devices that operate at room
temperature and in the absence of magnetic fields
Genome wide analysis of gene expression changes in skin from patients with type 2 diabetes
Non-healing chronic ulcers are a serious complication of diabetes and are a major healthcare problem. While a host of treatments have been explored to heal or prevent these ulcers from forming, these treatments have not been found to be consistently effective in clinical trials. An understanding of the changes in gene expression in the skin of diabetic patients may provide insight into the processes and mechanisms that precede the formation of non-healing ulcers. In this study, we investigated genome wide changes in gene expression in skin between patients with type 2 diabetes and non-diabetic patients using next generation sequencing. We compared the gene expression in skin samples taken from 27 patients (13 with type 2 diabetes and 14 non-diabetic). This information may be useful in identifying the causal factors and potential therapeutic targets for the prevention and treatment of diabetic related diseases
Urinary levels of N-nitroso compounds in relation to risk of gastric cancer: Findings from the Shanghai cohort study
Background: N-Nitroso compounds are thought to play a significant role in the development of gastric cancer. Epidemiological data, however, are sparse in examining the associations between biomarkers of exposure to N-nitroso compounds and the risk of gastric cancer. Methods: A nested case-control study within a prospective cohort of 18,244 middle-aged and older men in Shanghai, China, was conducted to examine the association between urinary level of N-nitroso compounds and risk of gastric cancer. Information on demographics, usual dietary intake, and use of alcohol and tobacco was collected through in-person interviews at enrollment. Urinary levels of nitrate, nitrite, N-nitroso-2-methylthiazolidine-4-carboxylic acid (NMTCA), N-nitrosoproline (NPRO), N-nitrososarcosine (NSAR), N-nitrosothiazolidine-4-carboxylic acid (NTCA), as well as serum H. pylori antibodies were quantified in 191 gastric cancer cases and 569 individually matched controls. Logistic regression method was used to assess the association between urinary levels of N-nitroso compounds and risk of gastric cancer. Results: Compared with controls, gastric cancer patients had overall comparable levels of urinary nitrate, nitrite, and N-nitroso compounds. Among individuals seronegative for antibodies to H. pylori, elevated levels of urinary nitrate were associated with increased risk of gastric cancer. The multivariate-adjusted odds ratios for the second and third tertiles of nitrate were 3.27 (95% confidence interval = 0.76-14.04) and 4.82 (95% confidence interval = 1.05-22.17), respectively, compared with the lowest tertile (P for trend = 0.042). There was no statistically significant association between urinary levels of nitrite or N-nitroso compounds and risk of gastric cancer. Urinary NMTCA level was significantly associated with consumption of alcohol and preserved meat and fish food items. Conclusion: The present study demonstrates that exposure to nitrate, a precursor of N-nitroso compounds, may increase the risk of gastric cancer among individuals without a history of H. pylori infection
Inclusive search for same-sign dilepton signatures in pp collisions at root s=7 TeV with the ATLAS detector
An inclusive search is presented for new physics in events with two isolated leptons (e or mu) having the same electric charge. The data are selected from events collected from p p collisions at root s = 7 TeV by the ATLAS detector and correspond to an integrated luminosity of 34 pb(-1). The spectra in dilepton invariant mass, missing transverse momentum and jet multiplicity are presented and compared to Standard Model predictions. In this event sample, no evidence is found for contributions beyond those of the Standard Model. Limits are set on the cross-section in a fiducial region for new sources of same-sign high-mass dilepton events in the ee, e mu and mu mu channels. Four models predicting same-sign dilepton signals are constrained: two descriptions of Majorana neutrinos, a cascade topology similar to supersymmetry or universal extra dimensions, and fourth generation d-type quarks. Assuming a new physics scale of 1 TeV, Majorana neutrinos produced by an effective operator V with masses below 460 GeV are excluded at 95% confidence level. A lower limit of 290 GeV is set at 95% confidence level on the mass of fourth generation d-type quarks
Measurement of the top quark-pair production cross section with ATLAS in pp collisions at \sqrt{s}=7\TeV
A measurement of the production cross-section for top quark pairs(\ttbar)
in collisions at \sqrt{s}=7 \TeV is presented using data recorded with
the ATLAS detector at the Large Hadron Collider. Events are selected in two
different topologies: single lepton (electron or muon ) with large
missing transverse energy and at least four jets, and dilepton (,
or ) with large missing transverse energy and at least two jets. In a
data sample of 2.9 pb-1, 37 candidate events are observed in the single-lepton
topology and 9 events in the dilepton topology. The corresponding expected
backgrounds from non-\ttbar Standard Model processes are estimated using
data-driven methods and determined to be events and events, respectively. The kinematic properties of the selected events are
consistent with SM \ttbar production. The inclusive top quark pair production
cross-section is measured to be \sigmattbar=145 \pm 31 ^{+42}_{-27} pb where
the first uncertainty is statistical and the second systematic. The measurement
agrees with perturbative QCD calculations.Comment: 30 pages plus author list (50 pages total), 9 figures, 11 tables,
CERN-PH number and final journal adde
Effective Rheology of Bubbles Moving in a Capillary Tube
We calculate the average volumetric flux versus pressure drop of bubbles
moving in a single capillary tube with varying diameter, finding a square-root
relation from mapping the flow equations onto that of a driven overdamped
pendulum. The calculation is based on a derivation of the equation of motion of
a bubble train from considering the capillary forces and the entropy production
associated with the viscous flow. We also calculate the configurational
probability of the positions of the bubbles.Comment: 4 pages, 1 figur
b-Initiated processes at the LHC: a reappraisal
Several key processes at the LHC in the standard model and beyond that
involve quarks, such as single-top, Higgs, and weak vector boson associated
production, can be described in QCD either in a 4-flavor or 5-flavor scheme. In
the former, quarks appear only in the final state and are typically
considered massive. In 5-flavor schemes, calculations include quarks in the
initial state, are simpler and allow the resummation of possibly large initial
state logarithms of the type into the
parton distribution function (PDF), being the typical scale of the
hard process. In this work we critically reconsider the rationale for using
5-flavor improved schemes at the LHC. Our motivation stems from the observation
that the effects of initial state logs are rarely very large in hadron
collisions: 4-flavor computations are pertubatively well behaved and a
substantial agreement between predictions in the two schemes is found. We
identify two distinct reasons that explain this behaviour, i.e., the
resummation of the initial state logarithms into the -PDF is relevant only
at large Bjorken and the possibly large ratios 's are
always accompanied by universal phase space suppression factors. Our study
paves the way to using both schemes for the same process so to exploit their
complementary advantages for different observables, such as employing a
5-flavor scheme to accurately predict the total cross section at NNLO and the
corresponding 4-flavor computation at NLO for fully exclusive studies.Comment: Fixed typo in Eq. (A.10) and few typos in Eq. (C.2) and (C.3
Search for direct pair production of the top squark in all-hadronic final states in proton-proton collisions at s√=8 TeV with the ATLAS detector
The results of a search for direct pair production of the scalar partner to the top quark using an integrated luminosity of 20.1fb−1 of proton–proton collision data at √s = 8 TeV recorded with the ATLAS detector at the LHC are reported. The top squark is assumed to decay via t˜→tχ˜01 or t˜→ bχ˜±1 →bW(∗)χ˜01 , where χ˜01 (χ˜±1 ) denotes the lightest neutralino (chargino) in supersymmetric models. The search targets a fully-hadronic final state in events with four or more jets and large missing transverse momentum. No significant excess over the Standard Model background prediction is observed, and exclusion limits are reported in terms of the top squark and neutralino masses and as a function of the branching fraction of t˜ → tχ˜01 . For a branching fraction of 100%, top squark masses in the range 270–645 GeV are excluded for χ˜01 masses below 30 GeV. For a branching fraction of 50% to either t˜ → tχ˜01 or t˜ → bχ˜±1 , and assuming the χ˜±1 mass to be twice the χ˜01 mass, top squark masses in the range 250–550 GeV are excluded for χ˜01 masses below 60 GeV
- …
