251 research outputs found

    Interlaminar Fracture Toughness Evaluation in Glass/Epoxy Composites Using Acoustic Emission and Finite Element Methods

    Get PDF
    © 2014, ASM International. Delamination is one of the most common modes of failure in laminated composites and it leads to the loss of structural strength and stiffness. In this paper, mode I, mode II, and mixed of these pure modes were investigated using mechanical data, Finite Element Method (FEM) and Acoustic Emission (AE) signals. Experimental data were obtained from insitu monitoring of glass/epoxy laminated composites with different lay-ups when subjected to different modes of failure. The main objective was to investigate the behavior of delamination propagation and to evaluate the critical value of the strain energy which is required for onset of the delamination (GC). For the identification of interlaminar fracture toughness of the specimens, four methods were used: (a) ASTM standard methods, (b) FEM analysis, (c) AE method, and (d) sentry function method which is a function of mechanical and AE behaviors of the specimens. The results showed that the GC values obtained by the sentry function method and FEM analysis were in a close agreement with the results of nonlinearity methods which is recommended in the ASTM standards. It was also found that the specimens under different loading conditions and various lay-up have different GC values. These differences are related to different stress components distribution in the specimens which induce various damage mechanisms. Accordingly, stress components distribution obtained from FEM analyses were in agreement with SEM observations of the damaged surfaces of the specimens

    Functional Variant in the Autophagy-Related 5 Gene Promotor is Associated with Childhood Asthma

    Get PDF
    Rationale and Objective: Autophagy is a cellular process directed at eliminating or recycling cellular proteins. Recently, the autophagy pathway has been implicated in immune dysfunction, the pathogenesis of inflammatory disorders, and response to viral infection. Associations between two genes in the autophagy pathway, ATG5 and ATG7, with childhood asthma were investigated. Methods: Using genetic and experimental approaches, we examined the association of 13 HapMap-derived tagging SNPs in ATG5 and ATG7 with childhood asthma in 312 asthmatic and 246 non-allergic control children. We confirmed our findings by using independent cohorts and imputation analysis. Finally, we evaluated the functional relevance of a disease associated SNP. Measurements and Main Results: We demonstrated that ATG5 single nucleotide polymorphisms rs12201458 and rs510432 were associated with asthma (p = 0.00085 and 0.0025, respectively). In three independent cohorts, additional variants in ATG5 in the same LD block were associated with asthma (p,0.05). We found that rs510432 was functionally relevant and conferred significantly increased promotor activity. Furthermore, Atg5 expression was increased in nasal epithelium of acute asthmatics compared to stable asthmatics and non-asthmatic controls. Conclusion: Genetic variants in ATG5, including a functional promotor variant, are associated with childhood asthma. Thes

    Energy Consumption, Carbon Emissions and Global Warming Potential of Wolfberry Production in Jingtai Oasis, Gansu Province, China

    Get PDF
    During the last decade, China's agro-food production has increased rapidly and been accompanied by the challenge of increasing greenhouse gas (GHG) emissions and other environmental pollutants from fertilizers, pesticides, and intensive energy use. Understanding the energy use and environmental impacts of crop production will help identify environmentally damaging hotspots of agro-production, allowing environmental impacts to be assessed and crop management strategies optimized. Conventional farming has been widely employed in wolfberry (Lycium barbarum) cultivation in China, which is an important cash tree crop not only for the rural economy but also from an ecological standpoint. Energy use and global warming potential (GWP) were investigated in a wolfberry production system in the Yellow River irrigated Jingtai region of Gansu. In total, 52 household farms were randomly selected to conduct the investigation using questionnaires. Total energy input and output were 321,800.73 and 166,888.80 MJ ha−1, respectively, in the production system. The highest share of energy inputs was found to be electricity consumption for lifting irrigation water, accounting for 68.52%, followed by chemical fertilizer application (11.37%). Energy use efficiency was 0.52 when considering both fruit and pruned wood. Nonrenewable energy use (88.52%) was far larger than the renewable energy input. The share of GWP of different inputs were 64.52% electricity, 27.72% nitrogen (N) fertilizer, 5.07% phosphate, 2.32% diesel, and 0.37% potassium, respectively. The highest share was related to electricity consumption for irrigation, followed by N fertilizer use. Total GWP in the wolfberry planting system was 26,018.64 kg CO2 eq ha−1 and the share of CO2, N2O, and CH4 were 99.47%, 0.48%, and negligible respectively with CO2 being dominant. Pathways for reducing energy use and GHG emission mitigation include: conversion to low carbon farming to establish a sustainable and cleaner production system with options of raising water use efficiency by adopting a seasonal gradient water pricing system and advanced irrigation techniques; reducing synthetic fertilizer use; and policy support: smallholder farmland transfer (concentration) for scale production, credit (small- and low-interest credit) and tax breaks

    Ruthenium oxide-carbon-based nanofiller-reinforced conducting polymer nanocomposites and their supercapacitor applications.

    Get PDF
    In this review article, we have presented for the first time the new applications of supercapacitor technologies and working principles of the family of RuO2-carbon-based nanofiller-reinforced conducting polymer nanocomposites. Our review focuses on pseudocapacitors and symmetric and asymmetric supercapacitors. Over the last years, the supercapacitors as a new technology in energy storage systems have attracted more and more attention. They have some unique characteristics such as fast charge/discharge capability, high energy and power densities, and long stability. However, the need for economic, compatible, and easy synthesis materials for supercapacitors have led to the development of RuO2-carbon-based nanofiller-reinforced conducting polymer nanocomposites with RuO2. Therefore, the aim of this manuscript was to review RuO2-carbon-based nanofiller-reinforced conducting polymer nanocomposites with RuO2 over the last 17 years

    The global burden of cancer attributable to risk factors, 2010-19: a systematic analysis for the Global Burden of Disease Study 2019

    Get PDF

    Global age-sex-specific fertility, mortality, healthy life expectancy (HALE), and population estimates in 204 countries and territories, 1950-2019 : a comprehensive demographic analysis for the Global Burden of Disease Study 2019

    Get PDF
    Background Accurate and up-to-date assessment of demographic metrics is crucial for understanding a wide range of social, economic, and public health issues that affect populations worldwide. The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2019 produced updated and comprehensive demographic assessments of the key indicators of fertility, mortality, migration, and population for 204 countries and territories and selected subnational locations from 1950 to 2019. Methods 8078 country-years of vital registration and sample registration data, 938 surveys, 349 censuses, and 238 other sources were identified and used to estimate age-specific fertility. Spatiotemporal Gaussian process regression (ST-GPR) was used to generate age-specific fertility rates for 5-year age groups between ages 15 and 49 years. With extensions to age groups 10-14 and 50-54 years, the total fertility rate (TFR) was then aggregated using the estimated age-specific fertility between ages 10 and 54 years. 7417 sources were used for under-5 mortality estimation and 7355 for adult mortality. ST-GPR was used to synthesise data sources after correction for known biases. Adult mortality was measured as the probability of death between ages 15 and 60 years based on vital registration, sample registration, and sibling histories, and was also estimated using ST-GPR. HIV-free life tables were then estimated using estimates of under-5 and adult mortality rates using a relational model life table system created for GBD, which closely tracks observed age-specific mortality rates from complete vital registration when available. Independent estimates of HIV-specific mortality generated by an epidemiological analysis of HIV prevalence surveys and antenatal clinic serosurveillance and other sources were incorporated into the estimates in countries with large epidemics. Annual and single-year age estimates of net migration and population for each country and territory were generated using a Bayesian hierarchical cohort component model that analysed estimated age-specific fertility and mortality rates along with 1250 censuses and 747 population registry years. We classified location-years into seven categories on the basis of the natural rate of increase in population (calculated by subtracting the crude death rate from the crude birth rate) and the net migration rate. We computed healthy life expectancy (HALE) using years lived with disability (YLDs) per capita, life tables, and standard demographic methods. Uncertainty was propagated throughout the demographic estimation process, including fertility, mortality, and population, with 1000 draw-level estimates produced for each metric. Findings The global TFR decreased from 2.72 (95% uncertainty interval [UI] 2.66-2.79) in 2000 to 2.31 (2.17-2.46) in 2019. Global annual livebirths increased from 134.5 million (131.5-137.8) in 2000 to a peak of 139.6 million (133.0-146.9) in 2016. Global livebirths then declined to 135.3 million (127.2-144.1) in 2019. Of the 204 countries and territories included in this study, in 2019, 102 had a TFR lower than 2.1, which is considered a good approximation of replacement-level fertility. All countries in sub-Saharan Africa had TFRs above replacement level in 2019 and accounted for 27.1% (95% UI 26.4-27.8) of global livebirths. Global life expectancy at birth increased from 67.2 years (95% UI 66.8-67.6) in 2000 to 73.5 years (72.8-74.3) in 2019. The total number of deaths increased from 50.7 million (49.5-51.9) in 2000 to 56.5 million (53.7-59.2) in 2019. Under-5 deaths declined from 9.6 million (9.1-10.3) in 2000 to 5.0 million (4.3-6.0) in 2019. Global population increased by 25.7%, from 6.2 billion (6.0-6.3) in 2000 to 7.7 billion (7.5-8.0) in 2019. In 2019, 34 countries had negative natural rates of increase; in 17 of these, the population declined because immigration was not sufficient to counteract the negative rate of decline. Globally, HALE increased from 58.6 years (56.1-60.8) in 2000 to 63.5 years (60.8-66.1) in 2019. HALE increased in 202 of 204 countries and territories between 2000 and 2019. Interpretation Over the past 20 years, fertility rates have been dropping steadily and life expectancy has been increasing, with few exceptions. Much of this change follows historical patterns linking social and economic determinants, such as those captured by the GBD Socio-demographic Index, with demographic outcomes. More recently, several countries have experienced a combination of low fertility and stagnating improvement in mortality rates, pushing more populations into the late stages of the demographic transition. Tracking demographic change and the emergence of new patterns will be essential for global health monitoring. Copyright (C) 2020 The Author(s). Published by Elsevier Ltd.Peer reviewe
    corecore