68 research outputs found

    Pharmacological profiles of aminoindanes, piperazines, and pipradrol derivatives

    Get PDF
    Aminoindanes, piperazines, and pipradrol derivatives are novel psychoactive substances found in "Ecstasy" tablets as replacements for 3,4-methylenedioxymethamphetamine (MDMA) or substances sold as "ivory wave." The pharmacology of these MDMA- and methylphenidate-like substances is poorly known. We characterized the pharmacology of the aminoindanes 5,6-methylenedioxy-2-aminoindane (MDAI), 5-iodoaminoindane (5-IAI), and 2-aminoindane (2-AI), the piperazines meta-chlorophenylpiperazine (m-CPP), trifluoromethylphenylpiperazine (TFMPP), and 1-benzylpiperazine (BZP), and the pipradrol derivatives desoxypipradrol (2-diphenylmethylpiperidine [2-DPMP]), diphenylprolinol (diphenyl-2-pyrrolidinemethanol [D2PM]), and methylphenidate. We investigated norepinephrine (NE), dopamine (DA), and serotonin (5-hydroxytryptamine [5-HT]) uptake inhibition using human embryonic kidney 293 (HEK 293) cells that express the respective human monoamine transporters (NET, DAT, and SERT). We also evaluated the drug-induced efflux of NE, DA, and 5-HT from monoamine-preloaded cells and the binding affinity to monoamine transporters and receptors, including trace amine-associated receptor 1 (TAAR1). 5-IAI and MDAI preferentially inhibited the SERT and NET and released 5-HT. 2-AI interacted with the NET. BZP blocked the NET and released DA. m-CPP and TFMPP interacted with the SERT and serotonergic receptors. The pipradrol derivatives were potent and selective catecholamine transporter blockers without substrate releasing properties. BZP, D2PM, and 2-DPMP lacked serotonergic activity and TAAR1 binding, in contrast to the aminoindanes and phenylpiperazines. In summary, all of the substances were monoamine transporter inhibitors, but marked differences were found in their DAT vs. SERT inhibition profiles, release properties, and receptor interactions. The pharmacological profiles of D2PM and 2-DPMP likely predict a high abuse liability

    Probing the cosmic web: inter-cluster filament detection using gravitational lensing

    Full text link
    The problem of detecting dark matter filaments in the cosmic web is considered. Weak lensing is an ideal probe of dark matter, and therefore forms the basis of particularly promising detection methods. We consider and develop a number of weak lensing techniques that could be used to detect filaments in individual or stacked cluster fields, and apply them to synthetic lensing data sets in the fields of clusters from the Millennium Simulation. These techniques are multipole moments of the shear and convergence, mass reconstruction, and parameterized fits to filament mass profiles using a Markov Chain Monte Carlo approach. In particular, two new filament detection techniques are explored (multipole shear filters and Markov Chain Monte Carlo mass profile fits), and we outline the quality of data required to be able to identify and quantify filament profiles. We also consider the effects of large scale structure on filament detection. We conclude that using these techniques, there will be realistic prospects of detecting filaments in data from future space-based missions. The methods presented in this paper will be of great use in the identification of dark matter filaments in future surveys.Comment: 12 pages, 4 figures, MNRAS accepted, (replacement due to corrupted end of pdf file

    Tips for implementing multigrid methods on domains containing holes

    Full text link
    As part of our development of a computer code to perform 3D `constrained evolution' of Einstein's equations in 3+1 form, we discuss issues regarding the efficient solution of elliptic equations on domains containing holes (i.e., excised regions), via the multigrid method. We consider as a test case the Poisson equation with a nonlinear term added, as a means of illustrating the principles involved, and move to a "real world" 3-dimensional problem which is the solution of the conformally flat Hamiltonian constraint with Dirichlet and Robin boundary conditions. Using our vertex-centered multigrid code, we demonstrate globally second-order-accurate solutions of elliptic equations over domains containing holes, in two and three spatial dimensions. Keys to the success of this method are the choice of the restriction operator near the holes and definition of the location of the inner boundary. In some cases (e.g. two holes in two dimensions), more and more smoothing may be required as the mesh spacing decreases to zero; however for the resolutions currently of interest to many numerical relativists, it is feasible to maintain second order convergence by concentrating smoothing (spatially) where it is needed most. This paper, and our publicly available source code, are intended to serve as semi-pedagogical guides for those who may wish to implement similar schemes.Comment: 18 pages, 11 figures, LaTeX. Added clarifications and references re. scope of paper, mathematical foundations, relevance of work. Accepted for publication in Classical & Quantum Gravit

    The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: constraints on the time variation of fundamental constants from the large-scale two-point correlation function

    Full text link
    We obtain constraints on the variation of the fundamental constants from the full shape of the redshift-space correlation function of a sample of luminous galaxies drawn from the Data Release 9 of the Baryonic Oscillations Spectroscopic Survey. We combine this information with data from recent CMB, BAO and H_0 measurements. We focus on possible variations of the fine structure constant \alpha and the electron mass m_e in the early universe, and study the degeneracies between these constants and other cosmological parameters, such as the dark energy equation of state parameter w_DE, the massive neutrinos fraction f_\nu, the effective number of relativistic species N_eff, and the primordial helium abundance Y_He. When only one of the fundamental constants is varied, our final bounds are \alpha / \alpha_0 = 0.9957_{-0.0042}^{+0.0041} and m_e /(m_e)_0 = 1.006_{-0.013}^{+0.014}. For their joint variation, our results are \alpha / \alpha_0 = 0.9901_{-0.0054}^{+0.0055} and m_e /(m_e)_0 = 1.028 +/- 0.019. Although when m_e is allowed to vary our constraints on w_DE are consistent with a cosmological constant, when \alpha is treated as a free parameter we find w_DE = -1.20 +/- 0.13; more than 1 \sigma away from its standard value. When f_\nu and \alpha are allowed to vary simultaneously, we find f_\nu < 0.043 (95% CL), implying a limit of \sum m_\nu < 0.46 eV (95% CL), while for m_e variation, we obtain f_nu < 0.086 (95% CL), which implies \sum m_\nu < 1.1 eV (95% CL). When N_eff or Y_He are considered as free parameters, their simultaneous variation with \alpha provides constraints close to their standard values (when the H_0 prior is not included in the analysis), while when m_e is allowed to vary, their preferred values are significantly higher. In all cases, our results are consistent with no variations of \alpha or m_e at the 1 or 2 \sigma level.Comment: 18 pages, 16 figures. Submitted to MNRA

    A Detection of Dark Matter Halo Ellipticity using Galaxy Cluster Lensing in SDSS

    Full text link
    We measure the ellipticity of isolated clusters of galaxies in the Sloan Digital Sky Survey (SDSS) using gravitational lensing. We stack the clusters, rotating so that the major axes of the ellipses determined by the positions of cluster member galaxies are aligned. We exclude the signal from the central 0.5 h^-1 Mpc to avoid problems with stacking alignment and cluster member contamination. We fit an elliptical NFW profile and find an axis ratio for the dark matter of f = b/a = 0.48+0.14-0.09 (1 sigma), and rule out f=1 at 99.6 per cent confidence thus ruling out a spherical halo. We find that the ellipticity of the cluster galaxy distribution is consistent with being equal to the dark matter ellipticity. The results are similar if we change the isolation criterion by 50 per cent in either direction.Comment: 11 pages, 6 figures, submitted to ApJ; replaced with version accepted for publication in Ap

    Assessing Big-Bang Nucleosynthesis

    Get PDF
    Systematic uncertainties in the light-element abundances and their evolution make a rigorous statistical assessment difficult. However, using Bayesian methods we show that the following statement is robust: the predicted and measured abundances are consistent with 95\% credibility only if the baryon-to-photon ratio is between 2×10102\times 10^{-10} and 6.5×10106.5\times 10^{-10} and the number of light neutrino species is less than 3.9. Our analysis suggests that the 4^4He abundance may have been systematically underestimated.Comment: 7 pages, LaTeX(2.09), 6 postscript figures (attached). A postscript version with figures can be found at ftp://astro.uchicago.edu/pub/astro/copi/assessing_BBN . (See the README file for details

    phenoPET: A dedicated PET Scanner for Plant Research based on digital SiPMs

    Get PDF
    In the frame of the German Plant Phenotyping Project (DPPN) we developed a novel PET scanner. In contrary to a clinical or preclinical PET scanner the detector rings of the Plant System are oriented in a horizontal plane. The final system will be equipped with three rings covering a Field of View (FOV) of 18 cm diameter and 20 cm axial height. One detector ring is formed by 12 modules. Each module contains four 8×8 pixel digital SiPM devices DPC-3200-22-44 (Philips Digital Photon Counting) connected to a PCB and four scintillator matrices with 16×16 individual LYSO scintillators. Crystal size is 1.85×1.85×10 mm3. The matrices are composed with both reflective and transparent contact faces between the crystals in order to optimize crystal identification. A cooling system keeps the detectors below 5°C and limits the dark count rate. Data are already preprocessed by the Cyclone FPGA (Altera) in the module and transmitted from there at 50MiB/s to the base board. The base board collects the data from all modules and allows coincidence detection performed on a Kintex-7 FPGA (Xilinx). Finally the data link to the computer system for image reconstruction is realized via an USB 3.0 connection. Due to the fast photodetectors the system is dedicated to work with rather high activities. Preliminary measurements showed a coincidence peak of 250 ps FWHM between two detector elements and an energy resolution ΔE/E = 12%. This paper will present first results from a one ring system with a FOV of 18 cm diameter and 6.5 cm axial height

    Subaru Weak Lensing Measurements of Four Strong Lensing Clusters: Are Lensing Clusters Over-Concentrated?

    Get PDF
    We derive radial mass profiles of four strong lensing selected clusters which show prominent giant arcs (Abell 1703, SDSS J1446+3032, SDSS J1531+3414, and SDSS J2111-0115), by combining detailed strong lens modeling with weak lensing shear measured from deep Subaru Suprime-cam images. Weak lensing signals are detected at high significance for all four clusters, whose redshifts range from z=0.28 to 0.64. We demonstrate that adding strong lensing information with known arc redshifts significantly improves constraints on the mass density profile, compared to those obtained from weak lensing alone. While the mass profiles are well fitted by the universal form predicted in N-body simulations of the LCDM model, all four clusters appear to be slightly more centrally concentrated (the concentration parameters c_vir \sim 8) than theoretical predictions, even after accounting for the bias toward higher concentrations inherent in lensing selected samples. Our results are consistent with previous studies which similarly detected a concentration excess, and increases the total number of clusters studied with the combined strong and weak lensing technique to ten. Combining our sample with previous work, we find that clusters with larger Einstein radii are more anomalously concentrated. We also present a detailed model of the lensing cluster A1703 with constraints from multiple image families, and find the dark matter inner density profile to be cuspy with the slope consistent with -1, in agreement with expectations.Comment: 41 pages, 9 figures, 7 tables, accepted for publication in Ap

    SDSS J124602.54+011318.8: A Highly Luminous Optical Transient at z=0.385

    Full text link
    We report the discovery of a highly luminous optical transient (OT), SDSS J124602.54+011318.8, associated with a galaxy at a redshift of 0.385. In this paper we consider the possibility that the OT may be a GRB afterglow. Three sets of images and two sets of spectra were obtained as part of the normal operations of the Sloan Digital Sky Survey (SDSS). In the first two image sets, observed two nights apart, the object appears as a point source at r17r^{*}\approx 17. The third image set, observed about 410 days later, shows an extended source which is more than 2.5 magnitudes fainter. The spectra were observed about 400 and 670 days after the first two image sets, and both show an apparently normal galaxy at a redshift of 0.385. Associating the OT with the galaxy, the absolute magnitude was Mr=24.8M_{r^*}=-24.8, which is over 4 magnitudes brighter than the most luminous supernova ever measured. The spectral energy distributions of the galaxy-subtracted OT derived from the first two image sets are well-fit by single power-laws with indices of βν=0.92\beta_{\nu}=-0.92 and -1.29 respectively, similar to most GRB afterglows. Based upon the luminosity of the OT, non-detections in contemporaneous ROTSE-I images, and the change in spectral slope, the OT, if an afterglow, was likely discovered early during a ``plateau'' or slowly-fading phase. The discovery of a GRB afterglow at this stage of the SDSS is consistent with expectations, but only if the optical emission is much less strongly beamed than the gamma-rays. We emphasize that other explanations for the OT cannot be ruled out; a recent follow-up study by [galyam02] provides strong evidence that this source is in fact an unusual AGN.Comment: Updated version to appear in Ap

    Dark Energy Survey identification of a low-mass active galactic nucleus at redshift 0.823 from optical variability

    Get PDF
    We report the identification of a low-mass active galactic nucleus (AGN), DES J0218−0430, in a redshift z = 0.823 galaxy in the Dark Energy Survey (DES) Supernova field. We select DES J0218−0430 as an AGN candidate by characterizing its long-term optical variability alone based on DES optical broad-band light curves spanning over 6 yr. An archival optical spectrum from the fourth phase of the Sloan Digital Sky Survey shows both broad Mg II and broad H β lines, confirming its nature as a broad-line AGN. Archival XMM–Newton X-ray observations suggest an intrinsic hard X-ray luminosity of L2−12keV≈7.6±0.4×1043 erg s−1, which exceeds those of the most X-ray luminous starburst galaxies, in support of an AGN driving the optical variability. Based on the broad H β from SDSS spectrum, we estimate a virial black hole (BH) mass of M• ≈ 106.43–106.72 M⊙ (with the error denoting the systematic uncertainty from different calibrations), consistent with the estimation from OzDES, making it the lowest mass AGN with redshift > 0.4 detected in optical. We estimate the host galaxy stellar mass to be M* ≈ 1010.5 ± 0.3 M⊙ based on modelling the multiwavelength spectral energy distribution. DES J0218−0430 extends the M•–M* relation observed in luminous AGNs at z ∼ 1 to masses lower than being probed by previous work. Our work demonstrates the feasibility of using optical variability to identify low-mass AGNs at higher redshift in deeper synoptic surveys with direct implications for the upcoming Legacy Survey of Space and Time at Vera C. Rubin Observatory
    corecore