160 research outputs found

    Antimicrobial peptaibols, novel suppressors of tumor cells, targeted calcium-mediated apoptosis and autophagy in human hepatocellular carcinoma cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Hepatocellular carcinoma (HCC) is one of the most common cancers in the world which is highly chemoresistant to currently available chemotherapeutic agents. Thus, novel therapeutic targets are needed to be sought for the successful treatment of HCC. Peptaibols, a family of peptides synthesized non-ribosomally by the <it>Trichoderma </it>species and other fungi, exhibit antibiotic activities against bacteria and fungi. Few studies recently showed that peptaibols exerted cytotoxicity toward human lung epithelial and breast carcinoma cells. However, the mechanism involved in peptaibol-induced cell death remains poorly understood.</p> <p>Results</p> <p>Here, we showed that Trichokonin VI (TK VI), a peptaibol from <it>Trichoderma pseudokoningii </it>SMF2, induced growth inhibition of HCC cells in a dose-dependent manner. It did not obviously impair the viability of normal liver cells at lower concentration. Moreover, the suppression of cell viability resulted from the programmed cell death (PCD) with characteristics of apoptosis and autophagy. An influx of Ca<sup>2+ </sup>triggered the activation of μ-calpain and proceeded to the translocation of Bax to mitochondria and subsequent promotion of apoptosis. On the other hand, typically morphological characteristics consistent with autophagy were also observed by punctate distribution of MDC staining and the induction of LC3-II, including extensive autophagic vacuolization and enclosure of cell organelles by these autophagosomes. More significantly, specific depletion of Bak expression by small RNA interfering (siRNA) could partly attenuate TK VI-induced autophagy. However, siRNA against Bax led to increased autophagy.</p> <p>Conclusion</p> <p>Taken together, these findings showed for the first time that peptaibols were novel regulators involved in both apoptosis and autophagy, suggesting that the class of peptaibols might serve as potential suppressors of tumor cells.</p

    Baicalein inhibits acinar-to-ductal metaplasia of pancreatic acinal cell AR42J via improving the inflammatory microenvironment

    Get PDF
    Pancreatic ductal adenocarcinoma (PDAC) is one of the most aggressive cancers. Recent research has demonstrated that chronic pancreatitis (CP) is associated with an increased risk of PDAC, partly due to acinar-to-ductal metaplasia (ADM). Baicalein has been shown to exert anti-inflammatory and anti-tumor effects for CP or PDAC, respectively. The aim of our study was to investigate the effect of baicalein, and the putative underlying mechanism, on inflammatory cytokines-induced ADM of rat pancreatic acinar cell line AR42J. To investigate ADM and baicalein effects in vitro, AR42J were treated with recombinant rat Tumor Necrosis Factor alpha (rTNFα) with or without baicalein for 5 days. Results showed that rTNFα-induced AR42J cells switched their phenotype from dominantly amylase-positive acinar cells to dominantly cytokeratin 19-positive ductal cells. Moreover, expression of the transcripts for TNFα or Hes-1, a Notch target, was up-regulated in these cells. Interestingly, baicalein reduced the population of ADM as well as cytokines gene expression but not Hes-1. Baicalein inhibited NF-κB activation induced by rTNFα in AR42J, but no effect on Notch 1activation. Moreover, baicalein suppressed the secretion of TNFα and Nitric Oxide (NO) in macrophages stimulated with LPS and further inhibited ADM of conditional medium-treated AR42J cells. Baicalein also suppressed the inflammatory response of LPS-activated macrophages, thereby inhibited ADM of AR42J by altering their microenvironment. Taken together, our study indicates that baicalein reduces rTNFα-induced ADM of AR42J cells by inhibiting NF-κB activation. It also sheds new light on Chinese material medica therapy of pancreatitis and thereby prevention of PDAC

    Integrated application of uniform design and least-squares support vector machines to transfection optimization

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Transfection in mammalian cells based on liposome presents great challenge for biological professionals. To protect themselves from exogenous insults, mammalian cells tend to manifest poor transfection efficiency. In order to gain high efficiency, we have to optimize several conditions of transfection, such as amount of liposome, amount of plasmid, and cell density at transfection. However, this process may be time-consuming and energy-consuming. Fortunately, several mathematical methods, developed in the past decades, may facilitate the resolution of this issue. This study investigates the possibility of optimizing transfection efficiency by using a method referred to as least-squares support vector machine, which requires only a few experiments and maintains fairly high accuracy.</p> <p>Results</p> <p>A protocol consists of 15 experiments was performed according to the principle of uniform design. In this protocol, amount of liposome, amount of plasmid, and the number of seeded cells 24 h before transfection were set as independent variables and transfection efficiency was set as dependent variable. A model was deduced from independent variables and their respective dependent variable. Another protocol made up by 10 experiments was performed to test the accuracy of the model. The model manifested a high accuracy. Compared to traditional method, the integrated application of uniform design and least-squares support vector machine greatly reduced the number of required experiments. What's more, higher transfection efficiency was achieved.</p> <p>Conclusion</p> <p>The integrated application of uniform design and least-squares support vector machine is a simple technique for obtaining high transfection efficiency. Using this novel method, the number of required experiments would be greatly cut down while higher efficiency would be gained. Least-squares support vector machine may be applicable to many other problems that need to be optimized.</p

    Lactylation, a Novel Metabolic Reprogramming Code: Current Status and Prospects

    Get PDF
    Lactate is an end product of glycolysis. As a critical energy source for mitochondrial respiration, lactate also acts as a precursor of gluconeogenesis and a signaling molecule. We briefly summarize emerging concepts regarding lactate metabolism, such as the lactate shuttle, lactate homeostasis, and lactate-microenvironment interaction. Accumulating evidence indicates that lactate-mediated reprogramming of immune cells and enhancement of cellular plasticity contribute to establishing disease-specific immunity status. However, the mechanisms by which changes in lactate states influence the establishment of diverse functional adaptive states are largely uncharacterized. Posttranslational histone modifications create a code that functions as a key sensor of metabolism and are responsible for transducing metabolic changes into stable gene expression patterns. In this review, we describe the recent advances in a novel lactate-induced histone modification, histone lysine lactylation. These observations support the idea that epigenetic reprogramming-linked lactate input is related to disease state outputs, such as cancer progression and drug resistance

    Deciphering neo-sex and B chromosome evolution by the draft genome of Drosophila albomicans

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Drosophila albomicans </it>is a unique model organism for studying both sex chromosome and B chromosome evolution. A pair of its autosomes comprising roughly 40% of the whole genome has fused to the ancient X and Y chromosomes only about 0.12 million years ago, thereby creating the youngest and most gene-rich neo-sex system reported to date. This species also possesses recently derived B chromosomes that show non-Mendelian inheritance and significantly influence fertility.</p> <p>Methods</p> <p>We sequenced male flies with B chromosomes at 124.5-fold genome coverage using next-generation sequencing. To characterize neo-Y specific changes and B chromosome sequences, we also sequenced inbred female flies derived from the same strain but without B's at 28.5-fold.</p> <p>Results</p> <p>We assembled a female genome and placed 53% of the sequence and 85% of the annotated proteins into specific chromosomes, by comparison with the 12 <it>Drosophila genomes</it>. Despite its very recent origin, the non-recombining neo-Y chromosome shows various signs of degeneration, including a significant enrichment of non-functional genes compared to the neo-X, and an excess of tandem duplications relative to other chromosomes. We also characterized a B-chromosome linked scaffold that contains an actively transcribed unit and shows sequence similarity to the subcentromeric regions of both the ancient X and the neo-X chromosome.</p> <p>Conclusions</p> <p>Our results provide novel insights into the very early stages of sex chromosome evolution and B chromosome origination, and suggest an unprecedented connection between the births of these two systems in <it>D. albomicans</it>.</p

    AAV-mediated human PEDF inhibits tumor growth and metastasis in murine colorectal peritoneal carcinomatosis model

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Angiogenesis plays an important role in tumor growth and metastasis, therefore antiangiogenic therapy was widely investigated as a promising approach for cancer therapy. Recently, pigment epithelium-derived factor (PEDF) has been shown to be the most potent inhibitor of angiogenesis. Adeno-associated virus (AAV) vectors have been intensively studied due to their wide tropisms, nonpathogenicity, and long-term transgene expression <it>in vivo</it>. The objective of this work was to evaluate the ability of AAV-mediated human PEDF (hPEDF) as a potent tumor suppressor and a potential candidate for cancer gene therapy.</p> <p>Methods</p> <p>Recombinant AAV<sub>2 </sub>encoding hPEDF (rAAV<sub>2</sub>-hPEDF) was constructed and produced, and then was assigned for <it>in vitro </it>and <it>in vivo </it>experiments. Conditioned medium from cells infected with rAAV<sub>2</sub>-hPEDF was used for cell proliferation and tube formation tests of human umbilical vein endothelial cells (HUVECs). Subsequently, colorectal peritoneal carcinomatosis (CRPC) mouse model was established and treated with rAAV<sub>2</sub>-hPEDF. Therapeutic efficacy of rAAV<sub>2</sub>-hPEDF were investigated, including tumor growth and metastasis, survival time, microvessel density (MVD) and apoptosis index of tumor tissues, and hPEDF levels in serum and ascites.</p> <p>Results</p> <p>rAAV<sub>2</sub>-hPEDF was successfully constructed, and transmission electron microscope (TEM) showed that rAAV<sub>2</sub>-hPEDF particles were non-enveloped icosahedral shape with a diameter of approximately 20 nm. rAAV<sub>2</sub>-hPEDF-infected cells expressed hPEDF protein, and the conditioned medium from infected cells inhibited proliferation and tube-formation of HUVECs <it>in vitro</it>. Furthermore, in CRPC mouse model, rAAV<sub>2</sub>-hPEDF significantly suppressed tumor growth and metastasis, and prolonged survival time of treated mice. Immunofluorescence studies indicated that rAAV<sub>2</sub>-hPEDF could inhibit angiogenesis and induce apoptosis in tumor tissues. Besides, hPEDF levels in serum and ascites of rAAV<sub>2</sub>-hPEDF-treated mice were significant higher than those in rAAV<sub>2</sub>-null or normal saline (NS) groups.</p> <p>Conclusions</p> <p>Thus, our results suggest that rAAV<sub>2</sub>-hPEDF may be a potential candidate as an antiangiogenic therapy agent.</p

    The Interleukin 3 Gene (IL3) Contributes to Human Brain Volume Variation by Regulating Proliferation and Survival of Neural Progenitors

    Get PDF
    One of the most significant evolutionary changes underlying the highly developed cognitive abilities of humans is the greatly enlarged brain volume. In addition to being far greater than in most other species, the volume of the human brain exhibits extensive variation and distinct sexual dimorphism in the general population. However, little is known about the genetic mechanisms underlying normal variation as well as the observed sex difference in human brain volume. Here we show that interleukin-3 (IL3) is strongly associated with brain volume variation in four genetically divergent populations. We identified a sequence polymorphism (rs31480) in the IL3 promoter which alters the expression of IL3 by affecting the binding affinity of transcription factor SP1. Further analysis indicated that IL3 and its receptors are continuously expressed in the developing mouse brain, reaching highest levels at postnatal day 1–4. Furthermore, we found IL3 receptor alpha (IL3RA) was mainly expressed in neural progenitors and neurons, and IL3 could promote proliferation and survival of the neural progenitors. The expression level of IL3 thus played pivotal roles in the expansion and maintenance of the neural progenitor pool and the number of surviving neurons. Moreover, we found that IL3 activated both estrogen receptors, but estrogen didn’t directly regulate the expression of IL3. Our results demonstrate that genetic variation in the IL3 promoter regulates human brain volume and reveals novel roles of IL3 in regulating brain development

    Robust estimation of bacterial cell count from optical density

    Get PDF
    Optical density (OD) is widely used to estimate the density of cells in liquid culture, but cannot be compared between instruments without a standardized calibration protocol and is challenging to relate to actual cell count. We address this with an interlaboratory study comparing three simple, low-cost, and highly accessible OD calibration protocols across 244 laboratories, applied to eight strains of constitutive GFP-expressing E. coli. Based on our results, we recommend calibrating OD to estimated cell count using serial dilution of silica microspheres, which produces highly precise calibration (95.5% of residuals &lt;1.2-fold), is easily assessed for quality control, also assesses instrument effective linear range, and can be combined with fluorescence calibration to obtain units of Molecules of Equivalent Fluorescein (MEFL) per cell, allowing direct comparison and data fusion with flow cytometry measurements: in our study, fluorescence per cell measurements showed only a 1.07-fold mean difference between plate reader and flow cytometry data

    Bees in China: A Brief Cultural History

    Get PDF

    Atomic spectrometry update: Review of advances in the analysis of metals, chemicals and materials

    Get PDF
    There has been a large increase in the number of papers published that are relevant to this review over this review period. The growth in popularity of LIBS is rapid, with applications being published for most sample types. This is undoubtedly because of its capability to analyse in situ on a production line (hence saving time and money) and its minimally destructive nature meaning that both forensic and cultural heritage samples may be analysed. It also has a standoff analysis capability meaning that hazardous materials, e.g. explosives or nuclear materials, may be analysed from a safe distance. The use of mathematical algorithms in conjunction with LIBS to enable improved accuracy has proved a popular area of research. This is especially true for ferrous and non-ferrous samples. Similarly, chemometric techniques have been used with LIBS to aid in the sorting of polymers and other materials. An increase in the number of papers in the subject area of alternative fuels was noted. This was at the expense of papers describing methods for the analysis of crude oils. For nanomaterials, previous years have seen a huge number of single particle and field flow fractionation characterisations. Although several such papers are still being published, the focus seems to be switching to applications of the nanoparticles and the mechanistic aspects of how they retain or bind with other analytes. This is the latest review covering the topic of advances in the analysis of metals, chemicals and materials. It follows on from last year's review1-6 and is part of the Atomic Spectrometry Updates series
    corecore