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Pancreatic ductal adenocarcinoma (PDAC) is one of the most aggressive cancers.

Recent research has demonstrated that chronic pancreatitis (CP) is associated with

an increased risk of PDAC, partly due to acinar-to-ductal metaplasia (ADM).

Baicalein has been shown to exert anti-inflammatory and anti-tumor effects for CP

or PDAC, respectively. The aim of our study was to investigate the effect of

baicalein, and the putative underlying mechanism, on inflammatory cytokines-

induced ADM of rat pancreatic acinar cell line AR42J. To investigate ADM and

baicalein effects in vitro, AR42J were treated with recombinant rat Tumor

Necrosis Factor alpha (rTNFα) with or without baicalein for 5 days. Results

showed that rTNFα-induced AR42J cells switched their phenotype from

dominantly amylase-positive acinar cells to dominantly cytokeratin 19-positive

ductal cells. Moreover, expression of the transcripts for TNFα or Hes-1, a Notch

target, was up-regulated in these cells. Interestingly, baicalein reduced the

population of ADM as well as cytokines gene expression but not Hes-1. Baicalein

inhibited NF-κB activation induced by rTNFα in AR42J, but no effect on Notch

1activation. Moreover, baicalein suppressed the secretion of TNFα and Nitric

Oxide (NO) in macrophages stimulated with LPS and further inhibited ADM of

conditional medium-treated AR42J cells. Baicalein also suppressed the inflamma-

tory response of LPS-activated macrophages, thereby inhibited ADM of AR42J by

altering their microenvironment. Taken together, our study indicates that baicalein

reduces rTNFα-induced ADM of AR42J cells by inhibiting NF-κB activation. It also

sheds new light on Chinese material medica therapy of pancreatitis and thereby

prevention of PDAC.

K E YWORD S

acinar-to-ductal metaplasia, baicalein, inflammatory microenvironment, NF-κB, Notch-1

1

ht
tp
://
do
c.
re
ro
.c
h

Published in "Journal of Cellular Physiology 233 (8): 5747–5755, 2018"
which should be cited to refer to this work.



1 | INTRODUCTION

Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive

cancer. Even with early diagnosis, nearly all patients die from the

disease within 1–2 years after diagnosis (Johnston et al., 2016).

The high mortality of full blown PDAC, calls for strategies for its

prevention. Many risk factors are associated with the development of

PDAC, the most common of which is pancreatitis (Li, Xie, Wolff, &

Abbruzzese, 2004). Clinical trials had shown that the incidence of

PDAC in patients with pancreatitis was greatly increased (Krejs, 2010;

Lowenfels & Maisonneuve, 2006). Recently, it has been shown that

inflammation contributes to development of PDAC as pancreatic

acinar cells may undergo transdifferentiation toward a ductal

phenotype (acinar-to-ductal metaplasia, ADM), progress to pancreatic

intraepithelial neoplasia (PanIN) and eventually form invasive PDAC

(Lardon & Bouwens, 2005; Shi et al., 2009). During pancreatitis, these

metaplasia duct-like cells dampen the expression of pancreatic

enzymes but increase the expression of keratin (Means & Logsdon,

2016). ADM was detected in patients with pancreatitis, in a model of

chronic pancreatitis (WBN/Kob rats) and in caerulein-induced

pancreatitis in mice, consistent with a role of the inflammatory

microenvironment in promoting tumorigenesis (Reding et al., 2009;

Seleznik et al., 2012). On the other hand, macrophage infiltration, and

the inflammatory response of pancreatic acinar cells can induce

pancreatic ADM and increase the incidence of PDAC (Helm et al.,

2014; Liou et al., 2013; Xue et al., 2015). Macrophage-derived

proinflammatory cytokines, such as TNFα, are potent drivers of ADM.

The root of Scutellaria baicalensis Georgi, listed in the Chinese

Pharmacopoeia, is one of the commonly used traditional Chinese herbs

for the treatment of pancreatitis in China and other East Asian

countries. Baicalein (5, 6, 7-trihydroxy-2-phenyl-4H-1-benzopyran-4-

one), one of its derived product, is a flavonoid with a defined chemical

structure, reported to possess excellent anti-inflammatory, and anti-

tumor activities (Gao, Snyder, Smith, & Chen, 2016). Baicalein could

alleviate experimental pancreatitis by inhibiting the expression of

pancreatic enzyme and cytokines via multiple pathways (Li et al.,

2015a, b). To the best of our knowledge, there are only a few previous

reports on the effects of baicalein on pancreatic ADM mainly focused

on its effect on apoptosis and proliferation (Cathcart et al., 2016; Chen

et al., 2014; Guo et al., 2015; He et al., 2017; Lian et al., 2017; Zhang

et al., 2013). Our study was initiated with the purpose to investigate

the effect of baicalein, and the putative mechanism involved, on ADM

induced by inflammatory cytokines, using the rat pancreatic acinar cell

line AR42J as in vitro model. Results issued from this study may

provide new sights into the potential role of baicalein in controlling

pancreatitis or prevention of PDAC.

2 | MATERIALS AND METHODS

2.1 | Cell lines, antibodies, and reagents

RAW264.7 murine macrophages cells, obtained from the Cell Culture

Center of the Chinese Academy of Medical Sciences (Beijing, China),

were maintained as described before (Sun, Wahl, Bilic, & Wuthrich,

2001). For the determination of NO and TNF-α concentrations, cells

were plated at a density of 2.5 × 105 cells/ml in 24-well plates for 24 hr

and then treated with LPS (0.5 μg/ml) in the presence or absence of

different concentrations of baicalein for 18 hr.

AR42J (ATCC® CRL-1492™) rat exocrine pancreas cells, obtained

from the American Type Culture Collection (ATCC, Manassas, VA),

were maintained as described before (Sun et al., 2007). For monitoring

AR42J phenotypical transdifferentiation and related gene and protein

expression, cells were routinely plated at a density of 8 × 104 cells/ml

in 12-well plates or on coverslips for 24 hr and then treated with

baicalein treated macrophage-conditional medium or recombinant rat

TNFα (50 ng/ml) in the presence or absence of baicalein (40 μM) for

5 days. Culture medium replaced every other day.

Recombinant rat TNFα (rTNFα) waspurchased fromPeproTech Inc.

(Rocky Hill, NJ). Primary antibodies against phosphorylated IκBα

(p-IκBα), IκBα, NF-κB, amylase, cytokeratin 19, and cleaved-Notch 1

were purchased from CST Inc. (Danvers, MA). Mouse TNFα DuoSet

ELISA kit was purchased from R&D Systems (Minneapolis, MN). Griess

Reagent was purchased from Beyotime Institute of Biotechnology

(Shanghai, China). Lipopolysaccharide (LPS)waspurchased fromSigma–

Aldrich (St Louis, MO). Baicalein (purity exceed 98%), purchased from

Top High Bio Technology Co., Ltd. (Nanjing, China), was dissolved in

dimethylsulfoxide (DMSO) and further diluted in cell culture medium.

The final DMSO concentration did not exceed 0.1% (v/v).

2.2 | Cell viability assay

Cell viability of AR42J or RAW264.7 treated with baicalein was

measured with MTT (3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyl

tetrazolium bromide) test. After treatment with baicalein or rTNFα

for 5 days, cells were incubated with MTT reagent (dissolved in PBS at

a final concentration of 0.5 mg/ml) at 37°C for 4 hr. After rinsing of the

well, DMSO was added to all wells and mixed thoroughly to dissolve

the dark blue crystals. Plates were read on a Microplate Reader

(Molecular Devices, Sunnyvale, CA), at 570 nm wavelength against a

reference wavelength of 630 nm.

2.3 | Immunofluorescence staining

Cells were cultured on glass coverslips, washed with phosphate-

buffered saline (PBS) to remove serum, fixed with 4% paraformalde-

hyde (PFA), permeabilized with 0.2% Triton X–100 for 5min, and

blocked for nonspecific binding of IgG with 3% Bovine Serum Albumin

(BSA) for 30min. The specific primary antibodies, goat anti-rat amylase

and rabbit anti rat cytokeratin 19 were used at 1:200 and 1:200

dilutions in PBS, respectively and incubated at 4°C overnight. After a

washing step, the coverslips were incubated with FITC- or TRITC-

conjugated secondary antibody for 1 hr. DAPI solution (125 μg/ml)

was added when samples were incubated with the secondary

antibodies. The coverslips were washed three times in PBS.

Images were taken with Nikon TiU microscope (Nikon, Amstelveen,

Netherlands).
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2.4 | RNA isolation and real-time PCR

Total RNA was isolated from AR42J cells using TRIzol reagent

according to the manufacturer's instructions (Invitrogen Life Technol-

ogies, Carlsbad, CA). Total RNA samples were pretreated with DNase

to eliminate residual genomic DNA. Total RNA (2 μg) was reverse-

transcribed to cDNA using GoScript™ Reverse Transcription System

(Promega Corporation, Madison, WI) according to manufacturer's

instructions. Briefly, the reaction was incubated in steps of 25°C for

5min, 42°C for 60min, 70°C for 15min, and held at 4°C. Real-time RT-

PCR was performed using SYBR Green PCR Master Mix reagent kits

(Promega Corporation, Madison, WI), performed in a real-time C1000

Touch™ Thermal Cycler with a CFX96 real time system (Bio-rad,

Hercules, CA) with the following thermocycler program: 95°C for 20 s,

40 cycles of 95°C for 5 s, and 60°C for 60 s. Specific primer sets for rat

TNFα, Hes-1, and β-actin were as follows: TNFα: Forward: 5′-3′-

GAAGAGAACCTGGGAGTAGATAAGG, Reverse: 5′-3′-GTCGTAG-

CAAACCACCAAGC; Hes-1: Forward: 5′-3′-CAACACGACACCGGA-

CAAAC, Reverse: 5′-3′-GGAATGCCGGGAGCTATCTT; β-actin:

Forward: 5′-3′-GTGACGTTGACATCCGTAAAGA, Reverse: 5′-3′-

GCCGGACTCATCGTACTCC. The mRNA expression levels were

determined relative to a blank control after normalizing to β-actin

using the 2−△△CT method. Each data point was carried out in

triplicates.

2.5 | Protein extraction and immunoblotting

After treatment with rTNFα, in the presence or absence of baicalein,

AR42J cells were washed twice with cold PBS, lysed in RIPA buffer

(50mM Tris-HCl, 150mMNaCl, and 1%NP-40) containing proteinase

and phosphatase inhibitors, and then centrifuged at 12,000g for

10min at 4°C. The supernatants were collected and stored at

−80°C until analysis.

Nucleoprotein extraction was performed using the nucleoprotein

extraction kit according to the manufacturer's instructions (Sangon

Biotech, Shanghai, China). AR42J cells were washed twice with cold

PBS, lysed in cold hypotonic buffer for 10min and centrifuged at 800g

for 5min at 4°C. The pellet was collected and then lysed in cold lysis

buffer (with proteinase and phosphatase inhibitors), and then

centrifuged at 12,000g for 10min at 4°C. The supernatants were

collected and stored at −80°C until analysis.

Protein concentrations were determined using the Bradford

method. Samples were diluted to 3mg/ml with PBS and 5 × SDS-

PAGE sample loading buffer, and heated at 95°C for 5min before

loading. Thirty microgram of total protein were loaded per lane on

Invitrogen™ NuPAGE™ Bis-Tris gels (10%) and subsequently trans-

ferred to polyvinylidenedifluoride (PVDF) membranes (Millipore, MA).

Membranes were blocked with 5% (w/v) skimmed milk in TBST buffer

at room temperature for 2 hr, followed by incubation with specific

primary antibodies for β-actin, p-IκBα, IκBα, nucleus NF-κB p65

(n-p65), or cleaved-Notch 1 (c-Notch 1), overnight at 4°C. After

washing three times with TBST, membranes were subsequently

incubated with corresponding secondary antibodies conjugated with

horseradish peroxidase (1:10,000) for 2 hr at room temperature. Bound

antibodies were detected using an enhanced chemiluminescence (ECL)

system (Promega Corporation, Madison, WI), according to manufac-

turer's instructions. Luminescence intensities were quantified using

Imaging Systems analysis software (VersaDoc Mp5000, BIO-RAD).

2.6 | Measurement of TNFα and NO production

RAW264.7 cells were incubated with or without LPS in the absence or

presence of baicalein for 18 hr. The NO and TNFα concentrations in

culture medium were measured using the Griess reagent system and

mouse TNFα ELISA kit, respectively, according to the manufacture's

protocol. Macrophage-conditioned medium (CM) were as following:

Control-CM, RAW264.7 cells cultured in the absence of LPS;

LPS-CM, RAW264.7 cells cultured in the presence of LPS; Baicalein-

CM, RAW264.7 cells cultured in the presence of LPS and Baicalein.

CMs were collected, centrifuged at 1,500g for 10min., and the

supernatants stored at −80°C for further use.

2.7 | Statistical analysis

All experiments were performed in triplicate, and each experiment was

repeated at least three times. All values represent mean ± SD. Data

were analyzed by one-way analysis of variance and t-test was used for

comparison between any two groups. p value of <0.05 was considered

as statistic significant different.

3 | RESULTS

3.1 | Effect of baicalein on cell viability of AR42J and
RAW264.7

The viability of cultured cells was monitored using the MTT assay.

Treatment of AR42J cells for 5 days with different concentration of

baicalein or RAW274.7macrophages for 18 hr revealed nomeasurable

difference in viability for baicalein concentrations 5–40 μM compared

to control samples. However, at 80 μM, baicalein decreased the

viability of AR42J and RAW274.7 cells by approx. 30% (Figures 1a and

1B).

3.2 | Baicalein inhibits rTNFα induced ADM of
pancreatic acinar AR42J cells

Under normal culture conditions AR42J cell are predominantly

amylase positive acinar cells. When AR42J cells were treated with

50 ng/ml rTNFα, the phenotype ofAR42J progressively converted into

a ductal phenotype after 5 days exposure (Figure 2a). AR42J switched

phenotype from dominantly amylase-positive acinary cells (FITC

labeled) to dominant cytokeratin-19 (CK-19)—positive ductal cells

(TRITC labeled) compared to untreated amylase positive AR42J cells.

Concomitant treatment with baicalein, markedly reduced the fraction

of CK-19-positive population of ductal AR42J cells induced by rTNFα

treatment. Furthermore, decreased expression of amylase and CK-19
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(Amylase/CK-19) by baicalein in rTNFα-treated cells also demon-

strated the results (Figure 2b).

3.3 | Baicalein inhibits TNFα but not Hes-1 gene
expression in rTNFα-treated AR42J cells

TNFα can trigger the expression of various inflammatory mediators in

AR42Jcells (Robinson,Vona-Davis,Riggs, Jackson,&McFadden,2006;Sun

et al., 2007). To examine whether baicalein could inhibit the expression of

some inflammatorymediator, expression of TNFαmRNAwasmonitored by

RT-PCR analysis after 5 days exposure to rTNFα. TNFα expression was

significant increased after 5 days of rTNFα treatment compared to control

cells, and baicalein significantly inhibited this induction (Figure 3a). It was

reported, that the Notch target gene Hes-1 (hairy and enhancer of split 1)

was supregulated during ADM (Halbrook & Crawford, 2015). A significant

up-regulation of Hes-1 was also observed in rTNFα-treated AR42J cells;

however, baicalein had no effects on it upregulation (Figure 3b).

These results indicate that baicalein inhibits the expression TNFα

mRNA induced by rTNFα in AR42J cells, while it does not inhibit

rTNFα-induced and Notch-mediated Hes-1 expression.

3.4 | Baicalein prevents rTNFα induced IκBα
degradation and NF-κB translocation, but
not Notch activation in AR42J cells

To further investigate the mechanisms of baicalein inhibition of TNF-

induced ADM, we monitored the degradation of IκBα, the nuclear

translocation of the NF-κB subunit p65 and the cleavage of Notch 1

by Western blotting analysis of total cellular or nuclear extracts.

Treatment of AR42J cells with rTNFα, resulted in increased IκBα

FIGURE 1 Effect of baicalein on the viability of AR42J (a) and RAW264.7 cells (b). AR42J cells were treated with baicalein for 5 days, and
RAW264.7 cells for 18 hr, respectively. **p < 0.01

FIGURE 2 Effect of Baicalein on phenotypical switch of AR42J cells. (a) Immunofluorescence staining of amylase (green), CK-19(red), and
DAPI of AR42 cells. (b) Amylase and CK-19 protein expression monitored by Western blotting. (c) Quantification of amylase and CK-19
proteins detected by Western blotting (panel b). *p < 0.05 versus rTNFα treatment only; ##p < 0.01 versus control
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degradation, phosphorylation of IκBα (p-IκBα), and p65 translocation

to the nucleus (n-p65) (Figure 4a), which indicated that NF-κB signaling

pathwaywas activated by TNF treatment. CleavedNotch 1 (c-Notch 1)

expression was increased during ADM. Baicalein (40 μM) inhibited the

degradation of IκBα, phosphorylation of IκBα, and p65 translocation to

the nucleus. However, baicalein treatment did not inhibit the cleavage

of Notch-1. Effects on protein expression were consistent with the

observed gene expression results.

3.5 | Baicalein inhibits LPS-induced TNFα and NO
secretion in RAW264.7 cells and further inhibits
macrophage-conditioned medium induced
ADM in AR42J cells

Previous work demonstrated that inflammatory environment drives

ADM in pancreas, and that baicalein could attenuate the inflammatory

response of infiltrated macrophages (Fan et al., 2013; Strobel et al.,

2007). We investigated whether baicalein could attenuate LPS-

induced inflammatory response, and further inhibit AR42J ADM

induced by macrophage conditioned medium. Baicalein inhibited LPS-

induced NO production (Figure 5a) and TNF-α protein expression

(Figure 5b) in RAW264.7 cells. AR42J cells were treated with different

CM (Control-CM, LPS-CM, and LPS/Baicalein-CM) for 5 days and

phenotype switch was monitored by immunofluorescence double

staining for amylase and CK-19 (Figure 6a). LPS-CM induced AR42J

phenotype switch from amylase positive cells to CK-19 positive cells

was more pronounced than ADM induced by TNF alone. Only few

amylase positive (green) cells were detected in LPS-CM group. In the

LPS/Baicalein-CM treated group AR42J cells remained largely amylase

positive, and only rare CK-19 positive (red) cells were detected.

Changes in amylase and CK-19 protein levels were further confirmed

by Western blotting analysis (Figure 6b). This indicates that baicalein

FIGURE 3 Effect of Baicalein on rTNFα induced gene transcription in AR42J cells. AR42J cells were exposed to rTNFα for 5 days, and
TNFα (a) and Hes-1 (b) mRNA levels were measured by RT-PCR. **p < 0.01 versus rTNFα treatment only; ##p < 0.01 versus control

FIGURE 4 Effects of Baicalein on IκB degradation, IκBα phosphorylation, NF-κB p65 nuclear translocation, and Notch 1protein cleavage in
AR42J cells. (a) AR42J cells were stimulated with rTNFα and/or baicalein. Total and nuclear proteins were analyzed by Western blotting for
IκB, p-IκBα, NF-κB p65subunit, and intracellular Notch 1protein cleavage. (b) Quantitative analysis of protein expression. *p < 0.05 versus
rTNFα treatment only; **p < 0.01 versus rTNFα treatment only; ##p < 0.01 versus control.
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suppressed inflammation-mediated ADM of AR42J cells by inhibiting

LPS-induced macrophage cytokines secretion and suppressing ADM

response of AR42J cells to inflammation.

4 | DISCUSSION

Metaplasia is a reversible conversion of a differentiated tissue type into

another differentiated tissue in response to microenvironmental stress

conditions, including chronic inflammation (Lardon & Bouwens, 2005).

Themetaplasia of exocrine acinar tissue into ductal complexes (ADM) in

the pancreas has been observed in different pathological conditions,

most importantly in chronic pancreatitis patients. ADMwas reproduced

experimentally, in a caerulein-induced pancreatitis mouse model, and

in multiple transgenic mouse models (Grabliauskaite et al., 2015;

Guerra et al., 2007; Lowenfels &Maisonneuve, 2006). Metaplastic duct

cells are more likely accumulate gene mutations leading to cell cycle

disruption, loss of tumor suppressor and DNA repair genes and to

progress to pancreatic intraepithelial neoplasia (PanIN) first and invasive

PDAC later (Garcia-Carracedo et al., 2015; Shi et al., 2009). Many

cytokines and activated signaling pathways may drive ADM in the

inflammatory microenvironment. Previous work has shown that over-

expressionof growth factors in acinar cells, such as transforming growth

factor α (TGFα) or β (TGFβ), were required for the activation of Notch

signaling and the induction of ADM (De La O & Murtaugh, 2009;

Miyamoto et al., 2003). Notch signaling regulates cell growth and

differentiation in a wide variety of tissues. Notch pathway components

and Notch target genes are upregulated in PDAC precursors (including

metaplasia ductal cells) in both mouse and human, which indicates its

important role in ADM (De La O & Murtaugh, 2009). Recent study

FIGURE 5 Effects of baicalein on NO release (a), and secreation of TNF-α (b) in RAW264.7 cells supernatant. **p < 0.01 versus LPS
treatment only; ##p < 0.01 versus Control

FIGURE 6 Effect of CM on phenotype switch of AR42J. (a) Immunofluorescence staining of AR42J cells. Acinar phonetype is indicated by
amalyse positivity (green staining, control), ductal phenotype is indicated by CK-19 positivity (red staining). (b) The level of amylase and CK-19
protein expression. (c) Quantitative analysis of protein expression of amylase/CK-19. **p < 0.01 versus LPS-CM treatment only; ##p < 0.01
versus control
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showed that TNFα is overexpressed in pancreatitis and could induce

ADMin acinar cells throughNF-κBactivation (Liouet al., 2013). Further,

tumor cell- and macrophage–derived TNFα plays a profound role in

pancreatitis and pancreas malignancy, and inhibition of TNFα had a

protective effect (Egberts et al., 2008; Hughes et al., 1996). NF-κB is an

important signaling molecule that controls multiple cellular functions,

including the production of inflammatory cytokines, chemokines, and

adhesion molecules. Strong activation of NF-κB is observed in many

cancers including pancreatic cancer (Aggarwal & Gehlot, 2009). Clinical

data also demonstrated that NF-κB activation is more frequent in

pancreatic cancers associated with chronic pancreatitis (CPPCa) than in

sporadic cancers (Shimosegawa, Kume, & Satoh, 2009). Taken together

these observations indicate that TNFα and the activation of NF-κB are

relevant to the pathogenesis of ADM.

Inflammatory cells, especially macrophages, are important in

the progression of chronic pancreatitis (CP) and the associated

increases risk of developing PDAC. During CP, injured acinar cells

secreted chemokines to attract and activate macrophages, which

produce various cytokines, chemokines, prostaglandins, and TGFβ

to aggravate the CP or possibly induce carcinogenesis (Reding

et al., 2006). Geou-Yarh Liou's research showed that macrophage-

secreted cytokines such as TNFα and RANTES could drive ADM

through NF-κB activation in acinar cells (Liou et al., 2013).

Macrophage-targeted therapy has achieved good therapeutic

effects in the treatment of CP and PDAC (Ruffell & Coussens,

2015). Previous studied showed that baicalein, an active compound

isolated from S. baicalensis Georgi, exert anti-inflammatory, and

anti-tumor effects on CP and PDAC. Baicalein was shown to inhibit

the inflammatory response of acinar cells and macrophages in vivo

and in vitro (Li et al., 2015a; Zhou et al., 2017). Here we report

results from in vitro experiments aimed at characterizing the

effects of baicalein on ADM in pancreatic acinar cells induced by

rTNFα and macrophages.

On the one hand, our results indicated that baicalein inhibits

rTNFα-induced ADM, and this effect was associated with suppression

of NF-κB activation, but not of canonical Notch 1 activation. Previous

work showed that Notch 1 activation and the target gene expression

were the typical characteristic of ADM. Recent research demonstrated

that Notch 1 is not required for ADM in a Kras-induced PDAC model,

which proved that other signaling pathway (such as inflammatory

pathways) may have dominant effects on ADM (Avila, Troutman,

Durham, & Kissil, 2012). Our results suggest that inhibition of NF-κB

by baicalein could reduce ADM development under inflammatory

conditions. On the other hand, baicalein inhibited the secretion of

TNFα and NO of LPS induced RAW264.7, and further inhibited ADM

induction in pancreatic exocrine cells AR42J. The observation that CM

from baicalein-treated macrophages was less effective in inducing

ADM, suggesting the baicalein might also contribute to inhibit ADM

indirectly, by inhibiting the pro-inflammatory activity of macrophages.

In conclusion, our results revealed that baicalein, a natural

compound derived from Chinese herbal medicine, inhibits pancreatic

ADM progressions through two concurrent mechanisms: First, by

suppressing TNFα-induced NF-κB activation in pancreatic acinar cells

and, second, by inhibiting TNFα secretion by activated macrophages

(shown in Figure 7). The study provides new experimental evidence on

the potential of Chinese material medica therapy for the prevention or

treatment of CP and subsequent development of PDAC.
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