139 research outputs found

    Crossover from Diffusive to Ballistic Transport in Periodic Quantum Maps

    Full text link
    We derive an expression for the mean square displacement of a particle whose motion is governed by a uniform, periodic, quantum multi-baker map. The expression is a function of both time, tt, and Planck's constant, ℏ\hbar, and allows a study of both the long time, t→∞t\to\infty, and semi-classical, ℏ→0\hbar\to 0, limits taken in either order. We evaluate the expression using random matrix theory as well as numerically, and observe good agreement between both sets of results. The long time limit shows that particle transport is generically ballistic, for any fixed value of Planck's constant. However, for fixed times, the semi-classical limit leads to diffusion. The mean square displacement for non-zero Planck's constant, and finite time, exhibits a crossover from diffusive to ballistic motion, with crossover time on the order of the inverse of Planck's constant. We argue, that these results are generic for a large class of 1D quantum random walks, similar to the quantum multi-baker, and that a sufficient condition for diffusion in the semi-classical limit is classically chaotic dynamics in each cell. Some connections between our work and the other literature on quantum random walks are discussed. These walks are of some interest in the theory of quantum computation.Comment: Final version to appear in Physica D, Proceedings of the International Workshop and Seminar on Microscopic Chaos and Transport in Many-Particle Systems, Dresden, 2002; corrected a minor error in section 3.1, new section 4.

    Joint flow-seismic inversion for characterizing fractured reservoirs: theoretical approach and numerical modeling

    Get PDF
    Traditionally, seismic interpretation is performed without any account of the flow behavior. Here, we present a methodology to characterize fractured geologic media by integrating flow and seismic data. The key element of the proposed approach is the identification of the intimate relation between acoustic and flow responses of a fractured reservoir through the fracture compliance. By means of synthetic models, we show that: (1) owing to the strong (but highly uncertain) dependence of fracture permeability on fracture compliance, the modeled flow response in a fractured reservoir is highly sensitive to the geophysical interpretation; and (2) by incorporating flow data (well pressures and production curves) into the inversion workflow, we can simultaneously reduce the error in the seismic interpretation and improve predictions of the reservoir flow dynamics.Eni-MIT Energy Initiative Founding Member Progra

    Specialized care improves outcomes for patients with cirrhosis who require general surgical operations

    Get PDF
    BACKGROUND: General surgical operations on patients with cirrhosis have historically been associated with high morbidity and mortality rates. This study examines a contemporary series of patients with cirrhosis undergoing general surgical procedures. METHODS: A retrospective evaluation of 358 cirrhotic patients undergoing general surgical operations at a single institution between 2004-2015 was performed. Thirty- and 90-day mortality along with complications and subsequent transplantation rates were examined. RESULTS: 358 cirrhotic patients were identified. The majority were Child-Turcotte-Pugh class (CTP) A (55.9%) followed by class B (32.4%) and class C (11.7%). Mean MELD score differed significantly between the groups (8.7 vs. 12.1 vs. 20.1; p<0.001). The most common operations were herniorrhaphy (29.9%), cholecystectomy (19.3%), and liver resection (14.5%). The majority of cases were performed semi-electively (68.4%), however, within the CTP C patients most cases were performed emergently (73.8%). Thirty and 90-day mortality for all patients were 5% and 6%, respectively. Mortality rates increased from CTP A to CTP C (30 day: 3.0% vs. 5.2% vs. 14.3%; p = 0.01; 90 day: 4.5% vs. 6.9% vs. 16.7%; p = 0.016). Additionally, 30-day mortality (12.8% vs. 2.3%; p<0.001), 90 day mortality (16.0% vs. 3.4%; p<0.001) were higher for emergent compared to elective cases. A total of 13 (3.6%) patients underwent transplantation ≀ 90 days from surgery. No elective cases resulted in an urgent transplantation. CONCLUSION: Performing general surgical operations on cirrhotic patients carries a significant morbidity and mortality. This contemporary series from a specialized liver center demonstrates improved outcomes compared to historical series. These data strongly support early referral of cirrhotic patients needing general surgical operation to centers with liver expertise to minimize morbidity and mortality

    The olfactory bulb is a source of high-frequency oscillations (130–180 Hz) associated with a subanesthetic dose of ketamine in rodents

    Get PDF
    High-frequency neuronal population oscillations (HFO, 130–180 Hz) are robustly potentiated by subanesthetic doses of ketamine. This frequency band has been recorded in functionally and neuroanatomically diverse cortical and subcortical regions, notably ventral striatal areas. However, the locus of generation remains largely unknown. There is compelling evidence that olfactory regions can drive oscillations in distant areas. Here we tested the hypothesis that the olfactory bulb (OB) is a locus for the generation of HFO following a subanesthetic dose of ketamine. The effect of ketamine on the electrophysiological activity of the OB and ventral striatum of male Wistar rats was examined using field potential and unit recordings, local inhibition, naris blockade, current source density and causality estimates. Ketamine-HFO was of larger magnitude and was phase-advanced in the OB relative to ventral striatum. Granger causality analysis was consistent with the OB as the source of HFO. Unilateral local inhibition of the OB and naris blockade both attenuated HFO recorded locally and in the ventral striatum. Within the OB, current source density analysis revealed HFO current dipoles close to the mitral layer and unit firing of mitral/tufted cells was phase locked to HFO. Our results reveal the OB as a source of ketamine-HFO which can contribute to HFO in the ventral striatum, known to project diffusely to many other brain regions. These findings provide a new conceptual understanding on how changes in olfactory system function may have implications for neurological disorders involving NMDA receptor dysfunction such as schizophrenia and depression

    Molecular mechanism of dynein recruitment to kinetochores by the Rod-Zw10-Zwilch complex and Spindly

    Get PDF
    The molecular motor dynein concentrates at the kinetochore region of mitotic chromosomes in animals to accelerate spindle microtubule capture and to control spindle checkpoint signaling. In this study, we describe the molecular mechanism used by the Rod-Zw10-Zwilch complex and the adaptor Spindly to recruit dynein to kinetochores in Caenorhabditis elegans embryos and human cells. We show that Rod's N-terminal beta-propeller and the associated Zwilch subunit bind Spindly's C-terminal domain, and we identify a specific Zwilch mutant that abrogates Spindly and dynein recruitment in vivo and Spindly binding to a Rod beta-propeller-Zwilch complex in vitro. Spindly's N-terminal coiled-coil uses distinct motifs to bind dynein light intermediate chain and the pointed-end complex of dynactin. Mutations in these motifs inhibit assembly of a dynein-dynactin-Spindly complex, and a null mutant of the dynactin pointed-end subunit p27 prevents kinetochore recruitment of dynein-dynactin without affecting other mitotic functions of the motor. Conservation of Spindly-like motifs in adaptors involved in intracellular transport suggests a common mechanism for linking dynein to cargo.This work was supported by a European Research Council Starting Grant (Dyneinome 338410) and a European Molecular Biology Organization Installation Grant to R. Gassmann. This work was also supported by funding from the Fundacao para a Ciencia e a Tecnologia to R. Gassmann (IF/01015/2013/CP1157/CT0006), C. Pereira (SFRH_BPD_95648_2013), and D.J. Barbosa (SFRH_BPD_101898_2014). Some C. elegans strains were provided by the Caenorhabditis Genetics Center, which is funded by the National Institutes of Health Office of Research Infrastructure Programs (P40 OD010440)

    Sequential approach to joint flow-seismic inversion for improved characterization of fractured media

    Get PDF
    Seismic interpretation of subsurface structures is traditionally performed without any account of flow behavior. Here we present a methodology for characterizing fractured geologic reservoirs by integrating flow and seismic data. The key element of the proposed approach is the identification—within the inversion—of the intimate relation between fracture compliance and fracture transmissivity, which determine the acoustic and flow responses of a fractured reservoir, respectively. Owing to the strong (but highly uncertain) dependence of fracture transmissivity on fracture compliance, the modeled flow response in a fractured reservoir is highly sensitive to the geophysical interpretation. By means of synthetic models, we show that by incorporating flow data (well pressures and tracer breakthrough curves) into the inversion workflow, we can simultaneously reduce the error in the seismic interpretation and improve predictions of the reservoir flow dynamics. While the inversion results are robust with respect to noise in the data for this synthetic example, the applicability of the methodology remains to be tested for more complex synthetic models and field cases.Eni-MIT Energy Initiative Founding Member ProgramKorea (South). Ministry of Land, Transportation and Maritime Affairs (15AWMP-B066761-03

    Sensitivity projections for a dual-phase argon TPC optimized for light dark matter searches through the ionization channel

    Full text link
    Dark matter lighter than 10 GeV/c2^2 encompasses a promising range of candidates. A conceptual design for a new detector, DarkSide-LowMass, is presented, based on the DarkSide-50 detector and progress toward DarkSide-20k, optimized for a low-threshold electron-counting measurement. Sensitivity to light dark matter is explored for various potential energy thresholds and background rates. These studies show that DarkSide-LowMass can achieve sensitivity to light dark matter down to the solar neutrino floor for GeV-scale masses and significant sensitivity down to 10 MeV/c2^2 considering the Migdal effect or interactions with electrons. Requirements for optimizing the detector's sensitivity are explored, as are potential sensitivity gains from modeling and mitigating spurious electron backgrounds that may dominate the signal at the lowest energies

    A Multilaboratory Comparison of Calibration Accuracy and the Performance of External References in Analytical Ultracentrifugation

    Get PDF
    Analytical ultracentrifugation (AUC) is a first principles based method to determine absolute sedimentation coefficients and buoyant molar masses of macromolecules and their complexes, reporting on their size and shape in free solution. The purpose of this multi-laboratory study was to establish the precision and accuracy of basic data dimensions in AUC and validate previously proposed calibration techniques. Three kits of AUC cell assemblies containing radial and temperature calibration tools and a bovine serum albumin (BSA) reference sample were shared among 67 laboratories, generating 129 comprehensive data sets. These allowed for an assessment of many parameters of instrument performance, including accuracy of the reported scan time after the start of centrifugation, the accuracy of the temperature calibration, and the accuracy of the radial magnification. The range of sedimentation coefficients obtained for BSA monomer in different instruments and using different optical systems was from 3.655 S to 4.949 S, with a mean and standard deviation of (4.304 ± 0.188) S (4.4%). After the combined application of correction factors derived from the external calibration references for elapsed time, scan velocity, temperature, and radial magnification, the range of s-values was reduced 7-fold with a mean of 4.325 S and a 6-fold reduced standard deviation of ± 0.030 S (0.7%). In addition, the large data set provided an opportunity to determine the instrument-to-instrument variation of the absolute radial positions reported in the scan files, the precision of photometric or refractometric signal magnitudes, and the precision of the calculated apparent molar mass of BSA monomer and the fraction of BSA dimers. These results highlight the necessity and effectiveness of independent calibration of basic AUC data dimensions for reliable quantitative studies

    A multilaboratory comparison of calibration accuracy and the performance of external references in analytical ultracentrifugation.

    Get PDF
    Analytical ultracentrifugation (AUC) is a first principles based method to determine absolute sedimentation coefficients and buoyant molar masses of macromolecules and their complexes, reporting on their size and shape in free solution. The purpose of this multi-laboratory study was to establish the precision and accuracy of basic data dimensions in AUC and validate previously proposed calibration techniques. Three kits of AUC cell assemblies containing radial and temperature calibration tools and a bovine serum albumin (BSA) reference sample were shared among 67 laboratories, generating 129 comprehensive data sets. These allowed for an assessment of many parameters of instrument performance, including accuracy of the reported scan time after the start of centrifugation, the accuracy of the temperature calibration, and the accuracy of the radial magnification. The range of sedimentation coefficients obtained for BSA monomer in different instruments and using different optical systems was from 3.655 S to 4.949 S, with a mean and standard deviation of (4.304 ± 0.188) S (4.4%). After the combined application of correction factors derived from the external calibration references for elapsed time, scan velocity, temperature, and radial magnification, the range of s-values was reduced 7-fold with a mean of 4.325 S and a 6-fold reduced standard deviation of ± 0.030 S (0.7%). In addition, the large data set provided an opportunity to determine the instrument-to-instrument variation of the absolute radial positions reported in the scan files, the precision of photometric or refractometric signal magnitudes, and the precision of the calculated apparent molar mass of BSA monomer and the fraction of BSA dimers. These results highlight the necessity and effectiveness of independent calibration of basic AUC data dimensions for reliable quantitative studies
    • 

    corecore