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SUMMARY

Traditionally, seismic interpretation is performed without any
account of the flow behavior. Here, we present a methodol-
ogy to characterize fractured geologic media by integrating
flow and seismic data. The key element of the proposed ap-
proach is the identification of the intimate relation between
acoustic and flow responses of a fractured reservoir through
the fracture compliance. By means of synthetic models, we
show that: (1) owing to the strong (but highly uncertain) de-
pendence of fracture permeability on fracture compliance, the
modeled flow response in a fractured reservoir is highly sensi-
tive to the geophysical interpretation; and (2) by incorporating
flow data (well pressures and production curves) into the inver-
sion workflow, we can simultaneously reduce the error in the
seismic interpretation and improve predictions of the reservoir
flow dynamics.

INTRODUCTION

Characterizing fractured geologic formations is essential in ex-
ploration geophysics and petroleum engineering, as much of
the oil and gas reserves worldwide are from reservoirs that are
naturally fractured. The relevance of fracture characterization
has only increased in recent years with the growth of uncon-
ventional resources like oil and gas shale. Determining the
effectiveness and sustainability of hydrocarbon production in
those environments depends critically on our ability to charac-
terize natural and induced fractures.

Traditionally, seismic interpretation and flow modeling have
been performed independently. Reservoir modeling typically
follows a unidirectional workflow. From an interpretation of
seismic surveys and other geophysical and geological data, a
structural reservoir model—with reservoir geometry and faults—
is built. Facies data and inference are then used to populate
reservoir properties (like porosity and permeability) on a fine
grid known as a static model (or geomodel). The number of
cells in the geomodel is typically too large to perform reservoir
flow studies, so a dynamic model is built from either upscaling
procedures or multiscale techniques, which solves the reser-
voir flow equations on a coarser grid. The rock physics prop-
erties (like porosity and permeability) and reservoir dynamics
properties (like relative permeability and capillary pressure)
are then modified to history-match production data. By then,
all feedback to the originating seismic data, and often all geo-
logic realism, is lost.

In parallel, seismic interpretation in challenging geologic en-
vironments like naturally-fractured reservoirs is plagued with
uncertainty. The goal of our work is twofold: on one hand, re-
duce that uncertainty by incorporating dynamic flow measure-

ments into the seismic interpretation; on the other, improve the
predictability of reservoir models by making joint use of seis-
mic and flow data.

The basic tenet of our proposed framework is that there is a
strong dependence between fracture permeability (which drives
the flow response) and fracture compliance (which drives the
seismic response). This connection has long been recognized
(Pyrak-Nolte and Morris, 2000; Brown and Fang, 2012), and
recent works have pointed to the potential of exploiting that
connection (Vlastos et al., 2006; Zhang et al., 2009). Here,
we propose a formal approach to improved characterization of
fractured reservoirs, and improved reservoir flow predictions,
by making joint use of the seismic and flow response.

OVERALL FRAMEWORK

Our approach seeks to combine seismic scattered wavefield
data that provides spatial estimates of fracture orientation, spac-
ing, and compliance (Fang et al., 2013; Zheng et al., 2013)
(Fang et al, 2013; Zheng et al., 2013) with flow data (pressure
and saturation values) at a number of well locations. The frac-
ture compliance values obtained from seismic data analysis are
related to permeability through a rock physics model (Pyrak-
Nolte and Morris, 2000; Brown and Fang, 2012). Both the
seismic data and the rock physics model contain potentially
significant uncertainty. By combining the flow and seismic
data in a single inversion we hope to obtain an optimal sub-
surface permeability field that can be used to predict reservoir
flow.

The general workflow is shown in Figure 1. Our proposed
framework is rather general and can be applied to field data,
but here we restrict our exposition and validation to synthetic
computer models. The starting point for the synthetic mod-
els is a ‘true’ compliance field, which entails generating: (1) a
fracture network, which can disordered but have certain geo-
metric statistics (fracture density, length and orientation); (2) elas-
tic compliance of the individual fractures, which also exhibits a
predefined geospatial distribution (mean, variance, and corre-
lation length). This model of interconnected discrete fractures,
embedded in a reservoir matrix located at depth, is the com-
mon physical model from which seismic and flow response is
determined (Figure 2a).

The true compliance field (C
T

) and true permeability field (K
T

)
are related via a predefined rock-physics model, K

T

= f (C
T

,a),
where a denotes a set of parameters governing the functional
relation between C

T

and K

T

(Figure 2b). The objective is then
to infer the true compliance field and compliance–permeability
relationship by a procedure that unifies seismic and flow mod-
eling.
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Seismic modeling. We first run a forward seismic model on
the true compliance field (C

T

) to generate the detailed wave-
field. We then treat this wavefield blindly, without knowl-
edge of the underlying structure, to estimate the seismic com-
pliance (C

M

) by means of the double-beam method (Zheng
et al., 2013) (Figure 3b). The error in the estimated compliance
field, e

c

=C

T

�C

M

, often exhibits a strong spatial correlation
with the actual compliance field C

T

(Figure 3c); something
that points to the need to model (de-trend) this error to reduce
this dependence. Methodologically, this implies a transforma-
tion C

M

!C

0
M

such that the error in the transformed variable,
e

0
c

= C

T

�C

0
M

, is only weakly dependent on the underlying
(and unknown) true compliance field. This error-modeling of
the compliance introduces a set of parameters, b , that need to
be estimated.

Flow modeling. The flow response relies on the compliance-
to-permeability relation, from which we generate the fracture-
permeability field K

T

. We simulate flow on this permeability
field, from which we extract a dynamic record of pressure (P

T

)
and production curves (S

T

) at a discrete set of locations that
represent well measurements. These records are subject to
measurement errors, and therefore we denote the accessible,
measured quantities as P

M

and S

M

, respectively. The param-
eters a generating this response are of course unknown. We
run the flow model (G

P

) and transport model (G
S

) on estimates
K̂

T

(â, b̂ ) to obtain simulated responses P̂

T

and Ŝ

T

. The sets of
parameters â and b̂ are then estimated by minimizing the er-
ror between the measured (P

M

,S
M

) and modeled (P̂
T

, Ŝ
T

) flow
response. While sophisticated estimation and inversion pro-
cedures exist, our work on simple least-squares minimization
procedure:

min
Ĉ

T

,â,b̂

"
P

M

�G

P

(K̂
T

(â, b̂ ))
s2

v

P

+
S

M

�G

S

(K̂
T

(â, b̂ ))
s2

v

S

#
. (1)

SEISMIC INVERSION ON ORTHOGONAL DISCRETE
FRACTURE NETWORKS

We test our approach on discrete fracture networks consist-
ing of two sets of parallel, equidistant, connected fractures
oriented at an angle of 0 and 90 degrees with respect to the
x-axis. The fracture spacing is uniform and equal to 80m. On
average, the mean value of x-directional compliance values are
two times larger than the y-directional compliance values. Our
compliance values vary between 10�10 and 10�9 m/Pa. We
construct a spatially-correlated compliance field that follows
a lognormal distribution with an exponential autocorrelation
function in space (Figure 2a). We simulate seismic shot gath-
ers using a 3D staggered grid finite-difference method (Fang
et al., 2013) (Coates and Schoenberg, 1995; Willis et al., 2006).
For seismic inversion, we apply the double-beam method (Zheng
et al., 2013) to estimate the modeled seismic compliance field C

M

.

ERROR MODEL FOR THE COMPLIANCE FIELD

By analyzing C

M

obtained from the double-beam method, we
find that the compliance measurement error, e

c

= C

M

�C

T

,
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Figure 1: Overall framework for joint flow-seismic inversion.
The above framework shows how seismic and flow models are
integrated to better characterize fractured reservoirs.
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Figure 2: (a) Compliance field of the orthogonal discrete
fracture networks that we study. (b) Functional relation be-
tween fracture compliance and permeability from rock-physics
model; the parameter a determines the curve fitting (red line)
to the data (blue circles).

is highly correlated with C

T

itself (Figure 3). From the point
of view of estimation, this is of course undesirable because
it would require a priori knowledge of the true compliance
field. Thus, one must introduce an error model that effec-
tively de-trends the modeled response and weakens its depen-
dence on the true compliance field. Our error correction model
is motivated by the scatter plot between C

T

�C

M

and C

T

,
which shows a linear trend (Figure 3d). From Figure 3d, we
observe that e

c

⌘ C

T

�C

M

= g(C
T

� hC
M

i) + e where e is
a random spatial variable that exhibits a much lower corre-
lation with C

T

. From these observations, and reorganizing,
(1� g)C

T

= (1� g)C
M

+ g(C
M

� hC
M

i) + e . Therefore, we
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Figure 3: (a) True compliance field for the orthogonal discrete
fracture network, interpolated to show the smoothed compli-
ance field (C

T

). (b) Modeled compliance field from double
beam seismic model (C

M

). (c) Difference between true com-
pliance field (C

T

) and seismic interpreted compliance field
(C

M

). We find a strong spatial correlation between the error
(e

c

) and the true compliance field (C
T

). (d) Error (C
T

�C

M

)
with respect to centered C

T

(C
T

�hC
M

i). We observe that C

M

is compressed compared to C

T

, and there is a linear relation
between the error and the centered C

T

.

define C

0
M

=C

M

+b (C
M

�hC
M

i) with b = g/(1� g)> 0 but
unknown, and e

0
c

= C

T

�C

0
M

= e can be modeled as an inde-
pendent random function.

FLOW AND TRANSPORT MODEL

We study a simple flow setting: a quarter five-spot flow ge-
ometry with a no-flow condition at the boundaries of the frac-
ture network, and fixed pressure values at the injection well
(F = 1 at the lower-left corner) and production well (F = 0
at the upper-right corner). We simulate flow through the frac-
ture networks by assuming Poiseuille’s law for the fluid flux
u

i j

between nodes i and j, u

i j

= �k

i j

(F
j

�F
i

)/l, where F
i

and F
j

are the fluid pressure values and k

i j

is compliance-
dependent fracture permeability. Imposing mass conservation
at each node i and assuming incompressible flow,

P
j

u

i j

=
0, leads to a linear system of equations, which is solved for
the pressure values simultaneously at all the nodes. Once the
fluxes at the links are known, we simulate transport of a pas-
sive tracer by particle tracking. We neglect diffusion along
links, and thus particles are advected with the flow velocity be-
tween nodes. We assume complete mixing at the nodes. Thus,
the link through which the particle exits a node is chosen ran-
domly with flux-weighted probability (Kang et al., 2011).

UNIFYING FLOW AND SEISMIC MEASUREMENTS:
LEAST SQUARES

Pressure and production curves can be obtained by solving the
pressure and transport equations with the permeability field
obtained from the C

T

field. The objective is to find a (which
characterizes the functional relation between K

T

and C

T

, Fig-
ure 2b), and b (which characterizes the error model of the
compliance field, Figure 3d) by minimizing the objective func-
tion in Equation (1), that is, the sum of the absolute values of
the difference between measured and simulated pressure (P

M

and P̂

T

) and the difference between measured and simulated
tracer production curves (S

M

and Ŝ

T

) from the seismically-
interpreted compliance field. As input for our least squares
minimization procedure we used four measured well pressure
data and a single production curve.

JOINT INVERSION RESULTS

Figure 4 shows the results obtained from our framework. We
highlight three main results:

1. The error modeling of the compliance field was very
effective: the error of the modified compliance (e0

c

=
C

T

�C

0
M

, Figure 4a) is much lower than the error of
the original modeled compliance (e

c

= C

T

�C

M

, Fig-
ure 3c), and exhibits virtually no spatial correlation
with the true compliance.

2. The functional relation between compliance and per-
meability was estimated accurately (Figure 4b), despite
the paucity of dynamic flow data used.

3. The improvements in the estimates of the compliance
field and the compliance-to-permeability relation lead
to dramatic improvements in the predictability of the
model, as evidenced by the ability of the model to pre-

dict the production curve for a different flow scenario
in which the injection and production wells are located
on a diametrically-opposite pattern (Figure 4c).

CONCLUSIONS

We have presented a new framework for joint inversion of seis-
mic and flow data for improved characterization of fractured
reservoirs. The key ingredient of our approach is to recog-
nize that the seismic response and the flow response are linked
through a fracture compliance-to-permeability rock-physics re-
lationship. Our methodology is rather general, and was de-
signed to be applicable to real field data, where the true com-
pliance field is unknown, the compliance-to-permeability re-
lationship is uncertain, and the flow data are noisy. Here, we
have illustrated the potential of the framework through syn-
thetic computer models of fractured reservoirs. We have shown
that integrating seismic interpretation (through the double-beam
method (Fang et al., 2013)) with flow modeling leads not only
to robust parameter estimation, but also to reservoir flow mod-
els that are more predictive.
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Figure 4: (a) Difference between the true compliance field
(C

T

) and the corrected seismically-interpreted compliance
field (C0

M

), which shows that the corrected compliance error
(e0

c

= C

T

�C

0
M

) is small and virtually independent of the true
compliance field C

T

. (b) Estimated compliance-permeability
relationship from joint flow-seismic inversion (blue line) accu-
rately captures the true compliance-permeability relationship
(red line); the green line is the initial input for our least square
procedure. (c) Tracer production curves before (green solid
line) and after inversion (blue solid line) compared with the
measurements (red solid line). The dashed lines show the per-
formance of the model in predictive mode, in which the model
is used after inversion to predict the flow response for a differ-
ent well configuration (a quarter-five spot with injector in the
upper-left and producer in the lower-right corner).
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