101 research outputs found

    A Sidon-type condition on set systems

    Full text link
    Consider families of kk-subsets (or blocks) on a ground set of size vv. Recall that if all tt-subsets occur with the same frequency λ\lambda, one obtains a tt-design with index λ\lambda. On the other hand, if all tt-subsets occur with different frequencies, such a family has been called (by Sarvate and others) a tt-adesign. An elementary observation shows that such families always exist for v>ktv > k \ge t. Here, we study the smallest possible maximum frequency μ=μ(t,k,v)\mu=\mu(t,k,v). The exact value of μ\mu is noted for t=1t=1 and an upper bound (best possible up to a constant multiple) is obtained for t=2t=2 using PBD closure. Weaker, yet still reasonable asymptotic bounds on μ\mu for higher tt follow from a probabilistic argument. Some connections are made with the famous Sidon problem of additive number theory.Comment: 6 page

    Chapter 3: Civil Practice and Procedure

    Get PDF

    Chapter 9: Civil Practice and Procedure

    Get PDF

    An Electrocorticographic Brain Interface in an Individual with Tetraplegia

    Get PDF
    Brain-computer interface (BCI) technology aims to help individuals with disability to control assistive devices and reanimate paralyzed limbs. Our study investigated the feasibility of an electrocorticography (ECoG)-based BCI system in an individual with tetraplegia caused by C4 level spinal cord injury. ECoG signals were recorded with a high-density 32-electrode grid over the hand and arm area of the left sensorimotor cortex. The participant was able to voluntarily activate his sensorimotor cortex using attempted movements, with distinct cortical activity patterns for different segments of the upper limb. Using only brain activity, the participant achieved robust control of 3D cursor movement. The ECoG grid was explanted 28 days post-implantation with no adverse effect. This study demonstrates that ECoG signals recorded from the sensorimotor cortex can be used for real-time device control in paralyzed individuals

    Self-Supervised Learning with Limited Labeled Data for Prostate Cancer Detection in High Frequency Ultrasound

    Full text link
    Deep learning-based analysis of high-frequency, high-resolution micro-ultrasound data shows great promise for prostate cancer detection. Previous approaches to analysis of ultrasound data largely follow a supervised learning paradigm. Ground truth labels for ultrasound images used for training deep networks often include coarse annotations generated from the histopathological analysis of tissue samples obtained via biopsy. This creates inherent limitations on the availability and quality of labeled data, posing major challenges to the success of supervised learning methods. On the other hand, unlabeled prostate ultrasound data are more abundant. In this work, we successfully apply self-supervised representation learning to micro-ultrasound data. Using ultrasound data from 1028 biopsy cores of 391 subjects obtained in two clinical centres, we demonstrate that feature representations learnt with this method can be used to classify cancer from non-cancer tissue, obtaining an AUROC score of 91% on an independent test set. To the best of our knowledge, this is the first successful end-to-end self-supervised learning approach for prostate cancer detection using ultrasound data. Our method outperforms baseline supervised learning approaches, generalizes well between different data centers, and scale well in performance as more unlabeled data are added, making it a promising approach for future research using large volumes of unlabeled data

    A functional model and simulation of spinal motor pools and intrafascicular recordings of motoneuron activity in peripheral nerve

    Get PDF
    Decoding motor intent from recorded neural signals is essential for the development of effective neural-controlled prostheses. To facilitate the development of online decoding algorithms we have developed a software platform to simulate neural motor signals recorded with peripheral nerve electrodes, such as longitudinal intrafascicular electrodes (LIFEs). The simulator uses stored motor intent signals to drive a pool of simulated motoneurons with various spike shapes, recruitment characteristics, and firing frequencies. Each electrode records a weighted sum of a subset of simulated motoneuron activity patterns. As designed, the simulator facilitates development of a suite of test scenarios that would not be possible with actual data sets because, unlike with actual recordings, in the simulator the individual contributions to the simulated composite recordings are known and can be methodically varied across a set of simulation runs. In this manner, the simulation tool is suitable for iterative development of real-time decoding algorithms prior to definitive evaluation in amputee subjects with implanted electrodes. The simulation tool was used to produce data sets that demonstrate its ability to capture some features of neural recordings that pose challenges for decoding algorithms

    Implantable Neural Probes for Brain-Machine Interfaces - Current Developments and Future Prospects

    Get PDF
    A Brain-Machine interface (BMI) allows for direct communication between the brain and machines. Neural probes for recording neural signals are among the essential components of a BMI system. In this report, we review research regarding implantable neural probes and their applications to BMIs. We first discuss conventional neural probes such as the tetrode, Utah array, Michigan probe, and electroencephalography (ECoG), following which we cover advancements in next-generation neural probes. These next-generation probes are associated with improvements in electrical properties, mechanical durability, biocompatibility, and offer a high degree of freedom in practical settings. Specifically, we focus on three key topics: (1) novel implantable neural probes that decrease the level of invasiveness without sacrificing performance, (2) multi-modal neural probes that measure both electrical and optical signals, (3) and neural probes developed using advanced materials. Because safety and precision are critical for practical applications of BMI systems, future studies should aim to enhance these properties when developing next-generation neural probes

    Biomimetic rehabilitation engineering: the importance of somatosensory feedback for brain-machine interfaces.

    Get PDF
    Brain-machine interfaces (BMIs) re-establish communication channels between the nervous system and an external device. The use of BMI technology has generated significant developments in rehabilitative medicine, promising new ways to restore lost sensory-motor functions. However and despite high-caliber basic research, only a few prototypes have successfully left the laboratory and are currently home-deployed. The failure of this laboratory-to-user transfer likely relates to the absence of BMI solutions for providing naturalistic feedback about the consequences of the BMI's actions. To overcome this limitation, nowadays cutting-edge BMI advances are guided by the principle of biomimicry; i.e. the artificial reproduction of normal neural mechanisms. Here, we focus on the importance of somatosensory feedback in BMIs devoted to reproducing movements with the goal of serving as a reference framework for future research on innovative rehabilitation procedures. First, we address the correspondence between users' needs and BMI solutions. Then, we describe the main features of invasive and non-invasive BMIs, including their degree of biomimicry and respective advantages and drawbacks. Furthermore, we explore the prevalent approaches for providing quasi-natural sensory feedback in BMI settings. Finally, we cover special situations that can promote biomimicry and we present the future directions in basic research and clinical applications. The continued incorporation of biomimetic features into the design of BMIs will surely serve to further ameliorate the realism of BMIs, as well as tremendously improve their actuation, acceptance, and use

    Imaging fascicular organization of rat sciatic nerves with fast neural electrical impedance tomography

    Get PDF
    Imaging compound action potentials (CAPs) in peripheral nerves could help avoid side effects in neuromodulation by selective stimulation of identified fascicles. Existing methods have low resolution, limited imaging depth, or are invasive. Fast neural electrical impedance tomography (EIT) allows fascicular CAP imaging with a resolution of <200 µm, <1 ms using a non-penetrating flexible nerve cuff electrode array. Here, we validate EIT imaging in rat sciatic nerve by comparison to micro-computed tomography (microCT) and histology with fluorescent dextran tracers. With EIT, there are reproducible localized changes in tissue impedance in response to stimulation of individual fascicles (tibial, peroneal and sural). The reconstructed EIT images correspond to microCT scans and histology, with significant separation between the fascicles (p < 0.01). The mean fascicle position is identified with an accuracy of 6% of nerve diameter. This suggests fast neural EIT can reliably image the functional fascicular anatomy of the nerves and so aid selective neuromodulation
    corecore