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Abstract
Objective. Brain–machine interfaces (BMIs) re-establish communication channels between the
nervous system and an external device. The use of BMI technology has generated significant
developments in rehabilitative medicine, promising new ways to restore lost sensory-motor
functions. However and despite high-caliber basic research, only a few prototypes have
successfully left the laboratory and are currently home-deployed. Approach. The failure of this
laboratory-to-user transfer likely relates to the absence of BMI solutions for providing
naturalistic feedback about the consequences of the BMI’s actions. To overcome this limitation,
nowadays cutting-edge BMI advances are guided by the principle of biomimicry; i.e. the
artificial reproduction of normal neural mechanisms. Main results. Here, we focus on the
importance of somatosensory feedback in BMIs devoted to reproducing movements with the
goal of serving as a reference framework for future research on innovative rehabilitation
procedures. First, we address the correspondence between users’ needs and BMI solutions. Then,
we describe the main features of invasive and non-invasive BMIs, including their degree of
biomimicry and respective advantages and drawbacks. Furthermore, we explore the prevalent
approaches for providing quasi-natural sensory feedback in BMI settings. Finally, we cover
special situations that can promote biomimicry and we present the future directions in basic
research and clinical applications. Significance. The continued incorporation of biomimetic
features into the design of BMIs will surely serve to further ameliorate the realism of BMIs, as
well as tremendously improve their actuation, acceptance, and use.
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1. Introduction

Every year in the United States of America alone, about two
million people suffer from the consequences of spinal cord
injury (250 thousand; Jackson et al 2004) or limb loss (1.6
million; Ziegler-Graham et al 2008). These, and other similar
breakdowns in communication between the central nervous
system and the body’s periphery, result in a complex picture
of symptoms including motor and/or somatosensory impair-
ments. Despite the great technological developments in e.g.
spinal cord repair (van den Brand et al 2012, Tabakow
et al 2014), and even if some of the most advanced approa-
ches are currently undergoing human clinical trials (Wang
et al 2014), the new solutions are still far from being
implemented as a part of standard rehabilitation procedures.
Until clinical and non-clinical researchers identify treatments
for each of these conditions and learn how to re-establish
functions of a disconnected or uncontrolled limb, patients will
continue to await novel solutions to re-acquire even the
slightest part of their former mobility and autonomy.

Brain–machine interfaces (BMIs) are an approach that
proposes bypassing the lesion or substituting the involved
body segment and instead aims to restore at least part of the
sensory-motor functions in patients suffering from movement
disorders due to disconnection or loss. BMIs decode neural
activity associated with motor intentions directly from the
brain or nerves and feed it into an external device (see also
Rupp et al 2014). The first BMI applications have been the
control of robotic prostheses on the basis of invasive
(Fetz 1969, Fetz and Finocchi 1971, Fetz and Baker 1973) or
non-invasive recordings (Vidal 1973). The ensuing forty
years have been marked by intensive worldwide research and
growth of the field at an astonishing pace. After an initial
phase of development and testing, BMI technologies are
nowadays receiving increasing attention from clinics
(Vaughan and Wolpaw 2006, Sellers et al 2010) and the
media (Nicolelis and Servick 2014).

Here, we focus on the importance of generating matching
somatosensory percepts when designing BMIs to restore lost
motor functions. The present work summarizes the current
biomedical engineering evidence on the different steps
required to bridge the gap between the onset/appearance of a
sensory-motor disease and its rehabilitation. In this vein, this
review is organized in six independent but concatenated
sections, each focused on a particular aspect of technology-
based sensorimotor restoration. After an initial introduction
(section 1, here), we focus on the first step of this restoration:
the user’s classification and the selection of the appropriate
BMI approach (section 2). Second, the user needs to control
the BMI system; here we review several techniques to decode
neural activity and different means to exploit useful biological
signals for BMI control (section 3). Third, the BMI system
has to volley back information on its current state to the user;
here we discuss current approaches to equip BMIs with

sensory feedback and mimic natural conditions to increase
acceptance and incorporation (sections 4 and 5). In particular,
we focus on the importance of biomimetic somatosensory
feedback (section 4) and the available techniques to produce
sensory-motor biomimicry (section 5). Finally, we review
current limitations and future perspectives to further develop
BMI systems (section 6).

2. User-BMI integration

The first step in clinically-applied BMIs is the classification of
the user’s needs, to find the best fit within the available BMI
solutions. As the same BMI approach can address similar
symptoms (despite different etiologies), the best user-BMI
match could instead be based on the effects of disease. Three
main classifications have been suggested (Wolpaw
et al 2006): (1) mild and/or localized motor impairments, but
presence of volitional movements—for this class of users,
BMI technology likely has limited benefit since their residual
muscular activity is sufficient to effectively control any
assistive device; (2) some degree of volitional movements—
users in this class (e.g. high cervical spinal cord injury) could
benefit from a hybrid BMI/electromyographic (EMG) sys-
tem; (3) no volitional movements at all—this class of users
could rely entirely on BMIs.

Especially in the third class of users, the ability to gen-
erate specific brain signals is crucial, because the BMI will be
controlled on this basis. However, some clinical conditions
(e.g. locked-in syndrome) can deteriorate this ability, leading
to so-called ‘illiteracy’ for the BMI (Guger et al 2003,
Vidaurre and Blankertz 2010). One possible solution is ‘co-
adaptation’ (Vidaurre et al 2011), in which both users and
BMIs dynamically adapt to each other (Millan et al 2010,
Wolpaw and Wolpaw 2012). That is, the BMI system reg-
ularly updates its decoding algorithm based on new neural
data from the user, and the users optimize their strategies
based on the performance of the BMI device. In most cases,
this closed-loop system results in steeper learning curves and/
or generally improved BMI efficiency (Bryan et al 2013,
Mattout et al 2015). However, it should be noted that in such
cases the users evaluate the performance of BMI devices
exploiting only visual information. In other words, to deter-
mine whether the BMI outcome corresponds to their inten-
tions they can only look at the device.

How can co-adaptation be further ameliorated? In this
regard, it is crucial to consider the concept of biomimicry:
‘the elicitation of naturalistic patterns of neuronal activation’
(Bensmaia and Miller 2014). In natural conditions, even the
simplest motor act triggers a cascade of complex multisensory
afferents (vision, hearing, somatosensation) resulting in a
broad panel of neural activity patterns. Thus, extending and
specifying previous definitions, here we refer to biomimicry
as the attempt to artificially emulate these multisensory
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spatio-temporal features of biological processes. On this
basis, we define as ‘biomimetic’ any approach aiming at using
artificial stimulation to reproduce naturalistic patterns of
neuronal activity associated with normal sensory sensations
and bodily control; namely the artificial recreation of the
neural activity naturally occurring during normal experiences.
Far from being an all-or-none phenomenon, we propose that
biomimicry is a graded process and it can be progressively
augmented, e.g. in today’s BMIs. Under this conceptualiza-
tion, a BMI system in which only vision is available to
evaluate its performance is less biomimetic than a more
biomimetic one exploiting both visual and somatosensory
feedback, and therefore eliciting patterns of neural activity
more closely corresponding to natural conditions.

Thus one possibility to ameliorate co-adaptation is to
increase the biomimicry of BMIs by providing more channels
of communication from the BMI to the user including addi-
tional sensory modalities, e.g. somatosensation. The tight
relationship between biomimicry and co-adaptation is parti-
cularly evident in the context of movements (Tabot
et al 2015) because the implementation of techniques able to
recreate somatosensations are increasing the biomimicry of
old-fashioned BMIs (Berg et al 2013, Tabot et al 2013),
augmenting their co-adaptation abilities. Relying on such
more naturalistic and complex multisensory neural schemes,
we postulate that future biomimetic systems will be experi-
enced more intuitively by the users, facilitating the user-BMI
co-adaptation, and easing the BMI acceptance and integration
into daily routines.

3. Neuroprosthetic control

After establishing the user-BMI communication channel
(section 2), the second step consists in providing users with
intuitive ‘control’, i.e. the ability to voluntarily change the
states of a dynamic system in order to achieve specific tasks
and desired goals (see also Tucker et al 2015). To this aim,
distinguishable brain signals have to be extracted and two
classes of techniques can be used to this aim: non-invasive
and invasive.

Within the non-invasive category, despite some approa-
ches exploiting electromyography (Scheme and Engle-
hart 2011, Ambrosini et al 2014, Memberg et al 2014) or the
electroculogram (Usakli et al 2010), the most common pro-
cedure for BMI control relies on electroencephalography
(EEG) (Birbaumer et al 2014, Bortole et al 2014). It can be
combined with advanced decoding algorithms to overcome
possible drops in signal quality (e.g. due to the resistance of
the skull) (Wolpaw and McFarland 2004). EEG-based BMIs
have been used to move wheelchairs (Carlson and
Millán 2013), spell words (Hwang et al 2012, Yin et al 2013),
and estimate the kinematics of hand movements (Bradberry
et al 2010) and locomotion (Presacco et al 2011). Building on
the effectiveness of mental simulation in activating specific
neural mechanisms (Ionta et al 2010), simulation of hand and
foot movements has also been shown to enable BMI control
(McFarland et al 2010).

Invasive techniques tend to provide less noisy signals
with better spatial resolution. However, they present down-
sides due to surgical implantation, limited number of chan-
nels, risk of infection, and cellular isolation or death. The
most common invasive techniques are intraneural recording,
electrocorticography (ECoG), and intracortical electrodes.
Being directly inserted inside the nerve fascicles, intraneural
electrodes can record peripheral activity (Rossini et al 2010,
Micera et al 2010a, 2010b) to exploit relevant tasks, such as
natural grasping (Micera et al 2011, Di Pino et al 2012).
Surgically inserting grids or strips of subdural electrodes
directly on the cortex, ECoG relies on the same principles as
EEG but avoids many sources of signal blurring. Being able
to encode the neural activity associated with movement
planning and control (Halje et al 2015), ECoG can be used to
control software (Schalk et al 2008, Leuthardt et al 2011,
Milekovic et al 2012, Wang et al 2013), robotic devices
(Kwak et al 2015), and restore motor functions (Wang
et al 2013). Finally, intracortical recording is based on the
surgical insertion of high-density electrode microarrays to
record the activity of single neurons (Campbell et al 1991). At
present, intracortical recordings performed in humans have
entailed pilot trials (Hochberg et al 2006, Simeral et al 2011,
Hochberg et al 2012, Collinger et al 2013), and most of the
BMI work on intracortical recording has been carried out on
non-human mammals (Serruya et al 2002, Velliste et al 2008,
O’Doherty et al 2009, Ethier et al 2012, Flint et al 2012).
This particular technique raises the issue of long-term signal
stability, as signal quality tends to decrease with time (Tak-
makov et al 2015) due to the emergence of inflammation and
fibrotic tissues that isolate the electrodes as a natural immune
response of the neuroglia (Polikov et al 2005). Nevertheless, a
new generation of biocompatible flexible electrodes decreases
the risk of rejection and provides stable signals for longer
periods (Marin and Fernandez 2010). The most notable recent
applications of intracortical BMI for humans include giving a
tetraplegic patient a point-and-click ability up to 1000 days
after implantation (Simeral et al 2011), or the natural control
of a seven degrees-of-freedom neuroprosthesis (Hochberg
et al 2012, Collinger et al 2013).

Altogether, multiple approaches can be considered for
BMI control, each of which is best-suited for a different
population of patients. The highest BMI performance is still
obtained using invasive recording techniques, but recent
advances in EEG signal processing are rapidly filling the gap
(Chavarriaga et al 2010) and might provide similar results
within a cheap, non-invasive, and perfectly safe framework in
the upcoming decades (Leeb et al 2013).

4. Biomimicry and (somato)sensory reproduction

Section 3 highlighted how an ideal BMI should translate brain
signals related to biological movements into computational
commands to activate mechanical movements (Pistohl
et al 2012). However, not only pure motor disorders, but also
deficits associated with sensory loss can dramatically affect
movement execution (Sainburg et al 1995). In traditional
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BMIs, sensory feedback is primarily visual and is linked to
the mere observation of the movement. However, vision alone
does not provide important information on objects’ material
properties, such as their texture, stiffness, slipperiness,
weight, roughness, compliance, etc. In addition, visual
information is pointless for cutaneous senses, such as pressure
during isometric muscle activity, in which a modulation of the
applied force does not translate into actual movement (for
example while grasping a stiff object). Thus, despite the
indisputable importance of vision for motor performance
(Johansson and Flanagan 2009), visual feedback alone cannot
satisfy the requirements for the effective manipulation of a
neuroprosthesis. Instead, kinesthetic senses are an inescapable
source of information to properly interact with the environ-
ment. Through senses such as proprioception or touch,
objects’ material properties are continuously extracted during
manipulation and are mediated by the appropriate somato-
sensory afferents, which allow a fine-tuned movement reca-
libration in real-time. Thus in natural conditions, any
movement is indissolubly associated with a cascade of, at
least, visual and kinesthetic consequences, which are used to
evaluate the results of the action and possibly correct some or
all components of the movement itself (e.g. preserving
direction but correcting force).

Mimicking this complex and multisensory scenario, the
combination of visual and kinesthetic feedback can increase
the biomimicry of modern BMIs (Callier et al 2015). At the
neural level this combination can biomimetically improve the
similarity between reproduced and natural neural activity.
This aspect can help the users to recognize the device as more
natural, based on the correspondence between expected and
perceived multisensory consequences of a given BMI
movement. Indeed, the artificial reproduction of natural
somatosensations associated with or following consequently
from a motor act is an important component to help users
diminish the differences between natural functions and BMI
reproductions. A real-time artificial somatosensory feedback
needs to be provided to the user as a consequence of the
prosthetic movement (Yanagisawa et al 2012), augmenting
the system’s biomimicry. This feedback could help the user to
identify appropriate mental strategies to adjust brain activity
according to the device’s performance. In addition, based on
this feedback, the BMI system could use advanced machine-
learning algorithms (1) to continuously adapt the prosthesis to
the user (Vidaurre et al 2011) and (2) to receive real-time
feedback of its own performance through, for example, the
detection of error-related brain activity patterns (Ferrez and
Millán 2005, Ferrez and del 2008, Chavarriaga and
Millán 2010, Combaz et al 2012). In order to close this user-
BMI-user loop, efficient control and real-time sensory feed-
back have to be properly integrated (Pisotta et al 2015). For
instance, recent evidence showed that congruent sensory
feedback (visuo-tactile) is crucial to properly represent our
body (Ionta et al 2013) and can boost the sense of ownership
also for a prosthesis (Marasco et al 2011), leading to accep-
tance and recognition of the prosthesis as part of one’s
own body.

Along these lines, BMIs’ biomimicry is continuously
increased, promoting more naturalistic interactions with
the environment, including somatosensory signals (Ramos-
Murguialday et al 2012). The transition from only visual to a
more biomimetic multisensory feedback is starting to yield its
first results. Building on previous evidence on the effective-
ness of mental simulation in activating sensory-motor path-
ways (Fourkas et al 2006), Cincotti et al (2007) integrated
either visual or vibrotactile real-time feedback while partici-
pants mentally simulated the movement of their right or left
hand, focusing on kinesthetic aspects. All participants repor-
ted a more natural feeling while using vibrotactile feedback
(Cincotti et al 2007). The potential interference between
somatosensory stimulation and movement control was eval-
uated in another study in which mental simulation of left or
right hand movements coincided with vibrotactile feedback
on the left or right arm (Chatterjee et al 2007). The results
showed that the ipsilateral vibrotactile feedback yielded better
results, while the incongruent contralateral vibrotactile feed-
back generated greater distraction (Chatterjee et al 2007).
Based on current models of healthy (Borich et al 2015) and
aberrant (Perruchoud et al 2014) sensory-motor integration,
this subjective preference for tactile feedback might arise
from the tight relationship between the motor and somato-
sensory (instead of visual) systems.

In summary, the effective implementation of somato-
sensory feedback in standard BMIs is an important step
towards the creation of better biomimetic conditions, but still
requires technological developments to produce closed-loop
systems between output (prosthetic movement) and input
(feedback regarding the movement itself). In the majority of
current BMIs, this output–input balance cannot be reached
because of unnatural or modality-mismatching feedback, and
indeed the need of somatosensory feedback is one bottleneck
for future BMIs (Lebedev and Nicolelis 2006).

5. Sensory-motor biomimicry

The improvements in BMIs have raised the possibility to
completely bypass a defective sensory organ and directly
stimulate (upstream) the nervous system. Building on intra-
neural recording of peripheral neural activity (section 3), this
approach can be used to stimulate peripheral nerves and
biomimetically elicit sensory percepts to be coordinated with
motor routines. Non-human primate research has shown that
BMIs’ biomimetic ability to reproduce neural natural condi-
tions can be based on the combination of intraneural
recordings and nerve stimulation. For instance, by means of
intraneural recordings, the efferent signals from the brain (e.g.
to an amputated hand) can be decoded and used to control and
move a prosthetic hand. Simultaneously, nerve stimulation
can be used to encode the afferent signals from the prosthesis
and transmit information on the states of the robotic hand to
the brain as a form of sensory feedback about the prosthetic
movement (Ledbetter et al 2013). In humans, a similarly
biomimetic approach can be used to restore (prosthetic) motor
control and somatosensation after amputation (Saal and
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Bensmaia 2015). This approach can improve the detection of
objects’ features, such as shape and stiffness even in absence
of visual and auditory information (Raspopovic et al 2014),
produce stable somatosensory percepts (Tan et al 2015), and
alleviate phantom pain (a chronic painful sensation from the
missing limb; Knecht et al 1996) as measured by structured
interviews (Di Pino et al 2012).

Remaining at the peripheral level, in combination with
classic BMI approaches, the so-called ‘targeted reinnervation’
is substantially improving the biomimicry of neuroprostheses
and has already demonstrated robust results in restoring
sensory and motor functions. This technique allows the re-
implantation of residual nerves after amputation into dener-
vated muscles (Kuiken et al 2004, 2009). After arm ampu-
tation the nerves are redirected and re-implanted into the
denervated ipsilateral chest area, creating a biomimetic
bidirectional communication channel. Downstream, voluntary
motor commands (normally traveling from the brain to the
missing limb) create muscular activity in the reinnervated
chest muscles, which function as bio-amplifiers and produce
the signals on the basis of which a BMI system can translate
neural information into prosthetic commands (Kuiken
et al 2007b). Upstream, afferent channels can transmit
information from the reinnervated mechanoreceptors (in the
chest) to the brain regions representing the amputated limb
(Kuiken et al 2007a). Thus, the user-BMI-user biomimetic
sensory-motor loop is closed. Mimicking natural conditions,
this innovative technique initiated a substantial improvement
in the biomimicry of BMI robotic prostheses, leading to
impressive results. For instance, patients with reinnervated
skins are as accurate as with normal skin in the identification
of gratings and force levels (Marasco et al 2009), in point
localization on the skin (Marasco et al 2009, Sensinger
et al 2009), and in grip force control based on biomimetically
reproduced sensations of touch, pressure, shear, and temper-
ature (Kim and Colgate 2012). One of the main outcome of
the augmented biomimicry of a BMI system based on targeted
reinnervation is the increased sense of ownership for a pros-
thetic device, based on both self-reports and physiological
measurements of the prosthesis’s embodiment, including
vibrations and temperature changes robotically delivered to
the reinnervated skin (Marasco et al 2011). Another important
result of the biomimicry increase in BMIs based on targeted
reinnervation is the restoration of hand maps at the cortical
levels to represent both motor and somatosensory aspects of
information incoming from and outgoing to the prosthetic
hand (Hebert et al 2014). These examples highlight the need
of constant development of biomimetic solutions based on the
improvement of existing sensors, able to detect and transmit a
broad range of relevant signals (different degrees of shearing,
pressure, temperature and humidity), such as the artificial skin
recently developed by Kim et al (2014).

Similarly, another solution to produce a much broader,
and therefore biomimetic, panel of percepts is via intracortical
microstimulation (ICMS). It is based on the same principles
as intracortical recording, but employs electrode arrays
instead of single electrodes (Romo et al 1998). Using ICMS,
sensations can be induced by stimulating specific cortical

areas with particular parameters. For example, after specific
ICMS-based training, owl monkeys are able to solve a binary
forced-choice task, solely based on specific patterns of ICMS
cues (Fitzsimmons et al 2007). Classic intracortical stimula-
tion and ICMS can be carried out over longer periods with
respect to intracortical recording (Callier et al 2015), because
the electrodes’ physiologic isolation due to fibrotic tissues can
be circumvented by modulating the stimulation parameters
(Bensmaia and Miller 2014). In this vein, the combination of
ICMS (for somatosensory encoding) with BMI (for prosthetic
control) can sensibly increase the biomimicry of bi-directional
sensory-motor integration systems. For instance, rhesus
monkeys can control a cursor based on signals from motor
cortex, while the consequences of the task itself are encoded
as specific ICMS patterns in the sensory cortex (O’Doherty
et al 2009). As an extension of this study, the same approach
has also been used to have rhesus monkeys control more
complex situations as virtual hands (O’Doherty et al 2012) as
well as to reproduce proprioceptive signals and guide arm
movements in the absence of vision (Dadarlat et al 2015).
Using this approach, non-human primates become able to
identify virtual textures within the same time-scale as for
natural tactile exploration (Lebedev et al 1994, Liu
et al 2005). Similarly, recent work has shown that ICMS can
be used to faithfully encode the force of skin indentation in
the hand and can be easily interfaced with a robotic prosthetic
hand, rendering de facto native and prosthetic body parts
more equivalent in terms of tactile discrimination (Berg
et al 2013), location, pressure, and timing (Tabot et al 2013).
Finally, IMCS can augment perceptual abilities, e.g. invisible
(infrared) inspection, by regulating intracortical stimulation as
a function of signals created by implanted infrared detectors
(Thomson et al 2013).

6. Future perspectives

6.1. Translational research

Nature inspires countless ways to manipulate technology, in
order to restore lost functions and progressively reduce con-
sequent limitations. For example, mimicking signals naturally
encoded by the retina improves efficacy of ocular implants
(Nirenberg and Pandarinath 2012), supporting the standpoint
that common technological and scientific advances can
ameliorate the sensory feedback for neuroprosthesis. How-
ever, natural perceptions require a precise combination of
numerous parameters such as frequency, duration, intensity,
temporal patterns, and localization (Cincotti et al 2007,
Bensmaia and Miller 2014). Specific combinations of these
features might elicit a broad range of different percepts and
the complete mapping of all parameters’ combinations with
the corresponding percepts can be extremely laborious, if not
impossible, in animal models. Conversely, this process can be
reverse-engineered in humans, by having the participant
reporting the sensation elicited by exhaustive combinations of
features, and identifying the corresponding combination for
each investigated sensory feedback. Therefore, future
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directions will have to attempt the transition from animal
research to human clinical trials, following the line drawn by
biomimicry principles.

6.2. Cortical maintenance

Not only can physical tasks be improved by augmenting the
biomimicry of BMIs, but also neurological conditions such as
phantom referral tactile sensation, resulting from reinnerva-
tion and/or cortical reorganization. The proximity of the hand
and face areas in the cerebral cortex is probably the reason
why many upper arm amputees get referral sensations in their
phantom hand while stimulating their face. Thanks to bio-
mimetic BMIs, a proper somatosensory stimulation can be
associated with specific prosthetic movements, thus re-
establishing a somatotopic correspondence between motor
intentions and sensory feedback and therefore limiting
sprouting of cortical maps (Antfolk et al 2012, 2013). Future
work will be required to precisely individuate the best type of
BMI-based somatosensory restoration to preserve functional
somatotopic cortical maps.

6.3. Users

The number of BMI research studies has steadily grown and
the scientific community has started to ponder on philoso-
phical, ethical, and social issues, including responsibility
(Lucivero and Tamburrini 2008, Grübler 2011), psychologi-
cal implications (Hildt 2010), dissemination of results
(Haselager et al 2009), and safety (Denning et al 2009). Yet,
it is important to incorporate the subjective experience of the
users, as they can provide important information on the
BMI’s performance, including positive effects of augmented
biomimicry. For example, one user described: ‘After a few
days I have a greater perception of my left hand, and I can
use it in a more spontaneous way!’; or ‘The illusion of the
movement of my own hand made me feel stimulated to con-
tinue the training’; or ‘I appreciate the technology, I
experienced it to be useful for motor recovery’ (Grübler
et al 2014).

6.4. Scalability

In future BMIs, another important aspect that will need fur-
ther attention concerns the concept of scalability. Scalability
can be defined as the ability of a system to handle and
accommodate variable amounts of information (Bondi 2000).
Therefore, a system whose output changes proportionally to
the environmental input is said to be a scalable system
(Duboc et al 2006). At present, one of the main limitations of
current BMIs is the inability to scale different degrees of
single components for complex behaviors. For example, as a
function of contextual factors, in naturalistic situations many
different forces can be applied to perform the same action
(e.g. grasping an object). We are effortlessly able to dose this
force based on the object’s characteristics, but the BMI might
trigger the same prosthetic movement for grasping e.g. a
fragile or a heavy object. Thus, future biomimetic BMI
developments will include flexibility (in terms of measurable

output) and ease of reconfiguration to better address pro-
gressively more complex behaviors.

7. Conclusions

The broad scope of BMI spreads across countless applica-
tions, including entertainment, monitoring of physiological
states (Lal et al 2003), as well as augmenting physical and
sensory abilities (Wodlinger et al 2015). Here, we reviewed
the existing literature on control and feedback for medical
BMI, with a particular focus on the importance of biomi-
micry-relevant signals. The willingness of disabled people to
enter BMI rehabilitation programs (Blabe et al 2015) should
be further supported by the developments of means to ease
the incorporation of the prosthesis into the user’s body
representation, considering the (possibly deteriorated) biolo-
gical and psychological sense of bodily self (Ionta et al 2016).
This is a critical step for efficient rehabilitation and is
enhanced by engaging naturally-occurring control and sen-
sory systems (Glannon 2014). An efficient incorporation of
the device can be significantly reinforced via biomimicry-
relevant somatosensory and proprioceptive feedback (Galla-
gher 2005). However, artificially re-created sensory percepts
run the risk of overloading or distorting natural information
processing (Lenay et al 2003) and, in contrast to normal
situations, are not constrained by cognitive mechanisms, e.g.
attention (Spence 2014). This is one of the most challenging
present limitations, in order to control noisy and distracting
signals as in natural conditions (reciprocal inhibition). Future
work will have to render BMIs able to self-regulate their
activity as a function of attentional and cognitive states. This
is a core reason why understanding and developing the con-
cept of biomimicry will be crucial for the upcoming deploy-
ment of BMIs and their laboratory-to-user transition.
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