1,637 research outputs found

    The Music Box : Scherzo

    Get PDF
    https://digitalcommons.library.umaine.edu/mmb-ps/3023/thumbnail.jp

    The Effect of Malpractice Liability on the Specialty of Obstetrics and Gynecology

    Get PDF
    Using data from a 2003 survey of 1,476 obstetrician-gynecologists, the effects of malpractice pressure on the specialty are investigated. Physicians report having made substantial changes to their practice in response to the general environment and to liability pressures. Regression analysis finds that liability pressure increases reports of income and practice reductions, but direct effects on actual income and productivity are less clear. Liability pressures may lead to a specialization effect, with some physicians concentrating more in obstetrics and others in gynecological surgery. Overall, the evidence suggests that liability pressure has moderate but significant effects on the specialty.

    Environmental Policy as Social Policy? The Impact of Childhood Lead Exposure on Crime

    Get PDF
    Childhood lead exposure can lead to psychological deficits that are strongly associated with aggressive and criminal behavior. In the late 1970s in the United States, lead was removed from gasoline under the Clean Air Act. Using the sharp state-specific reductions in lead exposure resulting from this removal, this article finds that the reduction in childhood lead exposure in the late 1970s and early 1980s is responsible for significant declines in violent crime in the 1990s, and may cause further declines into the future. The elasticity of violent crime with respect to lead is estimated to be approximately 0.8.

    Do Female Physicians Capture Their Scarcity Value? The Case of OB/GYNs

    Get PDF
    This paper analyzes how the imperfectly competitive market for Obstetricians and Gynecologists clears in the face of an excess demand for female OB/GYNs. This excess demand results from the convergence of three factors: i) all OB/GYN patients are women, ii) many women prefer to be treated by a female OB/GYN, iii) only a small portion of OB/GYNs are female. The paper finds that both money and non-money prices adjust: female OB/GYNs charge higher fees and also have longer waiting times. Furthermore, these effects are mediated by institutional structure: in contract settings in which money prices are rigid (i.e. managed care), waiting times are more likely to adjust, and in settings in which money prices are more flexible, the reverse occurs. In the end, female OB/GYNs are able to capture some of the value of the preferred service they provide but do not entirely close the gender income gap.

    Operant conditioning of spinal reflexes: from basic science to clinical therapy

    Get PDF
    New appreciation of the adaptive capabilities of the nervous system, recent recognition that most spinal cord injuries are incomplete, and progress in enabling regeneration are generating growing interest in novel rehabilitation therapies. Here we review the 35-year evolution of one promising new approach, operant conditioning of spinal reflexes. This work began in the late 1970’s as basic science; its purpose was to develop and exploit a uniquely accessible model for studying the acquisition and maintenance of a simple behavior in the mammalian central nervous system (CNS). The model was developed first in monkeys and then in rats, mice, and humans. Studies with it showed that the ostensibly simple behavior (i.e., a larger or smaller reflex) rests on a complex hierarchy of brain and spinal cord plasticity; and current investigations are delineating this plasticity and its interactions with the plasticity that supports other behaviors. In the last decade, the possible therapeutic uses of reflex conditioning have come under study, first in rats and then in humans. The initial results are very exciting, and they are spurring further studies. At the same time, the original basic science purpose and the new clinical purpose are enabling and illuminating each other in unexpected ways. The long course and current state of this work illustrate the practical importance of basic research and the valuable synergy that can develop between basic science questions and clinical needs

    A Comparison of a Brain-Computer Interface and an Eye Tracker: Is There a More Appropriate Technology for Controlling a Virtual Keyboard in an ALS Patient?

    Get PDF
    The ability of people affected by amyotrophic lateral sclerosis (ALS), muscular dystrophy or spinal cord injuries to physically interact with the environment, is usually reduced. In some cases, these patients suffer from a syndrome known as locked-in syndrome (LIS), defined by the patient’s inability to make any move-ment but blinks and eye movements. Tech communication systems available for people in LIS are very limited, being those based on eye-tracking and brain-computer interface (BCI) the most useful for these patients. A comparative study between both technologies in an ALS patient is carried out: an eye tracker and a visual P300-based BCI. The purpose of the study presented in this paper is to show that the choice of the technology could depend on user´s preference. The evaluation of performance, workload and other subjective measures will allow us to determine the usability of the systems. The obtained results suggest that, even if for this patient the BCI technology is more appropriate, the technology should be always tested and adapted for each user.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech

    Hybrid brain-computer interface and functional electrical stimulation for sensorimotor training in participants with tetraplegia: a proof-of-concept study

    Get PDF
    Background and Purpose: Impaired hand function decreases quality of life in persons with tetraplegia. We tested functional electrical stimulation (FES) controlled by a hybrid brain-computer interface (BCI) for improving hand function in participants with tetraplegia. Methods: Two participants with subacute tetraplegia (participant 1: C5 Brown-Sequard syndrome, participant 2: complete C5 lesion) took part in this proof-of-concept study. The goal was to determine whether the BCI system could drive the FES device by accurately classifying participants' intent (open or close the hand). Participants 1 and 2 received 10 sessions and 4 sessions of BCI-FES, respectively. A novel time-switch BCI strategy based on motor imagery was used to activate the FES. In one session, we tested a hybrid BCI-FES based on 2 spontaneously generated brain rhythms: a sensory-motor rhythm during motor imagery to activate a stimulator and occipital alpha rhythms to deactivate the stimulator. Participants received BCI-FES therapy 2 to 3 times a week in addition to conventional therapy. Imagery ability and muscle strength were measured before and after treatment. Results: Visual feedback was associated with a 4-fold increase of brain response during motor imagery in both participants. For participant 1, classification accuracy (open/closed) for motor imagery-based BCI was 83.5% (left hand) and 83.8% (right hand); participant 2 had a classification accuracy of 83.8% for the right hand. Participant 1 had moderate improvement in muscle strength, while there was no change for participant 2. Discussion and Conclusion: We demonstrated feasibility of BCI-FES, using 2 naturally generated brain rhythms. Studies on a larger number of participants are needed to separate the effects of BCI training from effects of conventional therapy

    A note on brain actuated spelling with the Berlin brain-computer interface

    Get PDF
    Brain-Computer Interfaces (BCIs) are systems capable of decoding neural activity in real time, thereby allowing a computer application to be directly controlled by the brain. Since the characteristics of such direct brain-tocomputer interaction are limited in several aspects, one major challenge in BCI research is intelligent front-end design. Here we present the mental text entry application ‘Hex-o-Spell’ which incorporates principles of Human-Computer Interaction research into BCI feedback design. The system utilises the high visual display bandwidth to help compensate for the extremely limited control bandwidth which operates with only two mental states, where the timing of the state changes encodes most of the information. The display is visually appealing, and control is robust. The effectiveness and robustness of the interface was demonstrated at the CeBIT 2006 (world’s largest IT fair) where two subjects operated the mental text entry system at a speed of up to 7.6 char/min

    Teegi: Tangible EEG Interface

    Get PDF
    We introduce Teegi, a Tangible ElectroEncephaloGraphy (EEG) Interface that enables novice users to get to know more about something as complex as brain signals, in an easy, en- gaging and informative way. To this end, we have designed a new system based on a unique combination of spatial aug- mented reality, tangible interaction and real-time neurotech- nologies. With Teegi, a user can visualize and analyze his or her own brain activity in real-time, on a tangible character that can be easily manipulated, and with which it is possible to interact. An exploration study has shown that interacting with Teegi seems to be easy, motivating, reliable and infor- mative. Overall, this suggests that Teegi is a promising and relevant training and mediation tool for the general public.Comment: to appear in UIST-ACM User Interface Software and Technology Symposium, Oct 2014, Honolulu, United State

    Targeting Neuroplasticity to Improve Motor Recovery after Stroke

    Get PDF
    After neurological injury, people develop abnormal patterns of neural activity that limit motor recovery. Traditional rehabilitation, which concentrates on practicing impaired skills, is seldom fully effective. New targeted neuroplasticity (TNP) protocols interact with the CNS to induce beneficial plasticity in key sites and thereby enable wider beneficial plasticity. They can complement traditional therapy and enhance recovery. However, their development and validation is difficult because many different TNP protocols are conceivable, and evaluating even one of them is lengthy, laborious, and expensive. Computational models can address this problem by triaging numerous candidate protocols rapidly and effectively. Animal and human empirical testing can then concentrate on the most promising ones. Here we simulate a neural network of corticospinal neurons that control motoneurons eliciting unilateral finger extension. We use this network to (1) study the mechanisms and patterns of cortical reorganization after a stroke, and (2) identify and parameterize a TNP protocol that improves recovery of extension force. After a simulated stroke, standard training produced abnormal bilateral cortical activation and suboptimal force recovery. To enhance recovery, we interdigitated standard trials with trials in which the teaching signal came from a targeted population of sub-optimized neurons. Targeting neurons in secondary motor areas on 5-20% of the total trials restored lateralized cortical activation and improved recovery of extension force. The results illuminate mechanisms underlying suboptimal cortical activity post-stroke; they enable identification and parameterization of the most promising TNP protocols. By providing initial guidance, computational models could facilitate and accelerate realization of new therapies that improve motor recovery
    corecore