740 research outputs found
Infant Human Immunodeficiency Virus-free Survival in the Era of Universal Antiretroviral Therapy for Pregnant and Breastfeeding Women: A Community-based Cohort Study From Rural Zambia.
BACKGROUND: Lifelong antiretroviral therapy (ART) is now recommended for all human immunodeficiency virus (HIV)-infected pregnant and breastfeeding women; however, few have described overall infant outcomes in this new era for the prevention of mother-to-child HIV transmission (PMTCT). METHODS: As part of an assessment of PMTCT program impact, we enrolled a prospective cohort study in 4 predominantly rural districts in Zambia. HIV-infected mothers and their newborns (≤30 days old) were recruited and followed at 6 weeks, 6 months and 12 months postpartum; infant specimens were tested via HIV DNA polymerase chain reaction. In Kaplan-Meier analyses, we estimated overall infant HIV-free survival and then stratified by district, community and maternal ART use. We investigated the relationship between community-level 12-month, self-reported maternal ART use and infant HIV-free survival via linear regression. RESULTS: From June 2014 to November 2015, we enrolled 827 mother-infant pairs in 33 communities. At 12 months, small proportions of infants had died (2.8%), were HIV-infected (3.0%) or were lost to follow-up (4.3%). Overall, infant HIV-free survival was 99.0% [95% confidence interval (CI): 98.0%-99.5%] at 6 weeks, 97.5% (95% CI: 96.1%-98.4%) at 6 months and 96.3% (95% CI: 94.8%-97.4%) at 12 months. Women reporting ART use at enrollment had higher infant HIV-free survival than those who did not (97.4% vs. 89.0%, P = 0.01). Differences were noted at the district and site levels (P = 0.01). In community-level analysis, no relationship was observed between 12-month infant HIV-free survival and self-reported maternal ART use (P = 0.65). CONCLUSION: Although encouraging, these findings highlight the need for rigorous monitoring and evaluation of PMTCT services at the population level
Influence of freeze-thaw events on carbon dioxide emission from soils at different moisture and land use
BACKGROUND: The repeated freeze-thaw events during cold season, freezing of soils in autumn and thawing in spring are typical for the tundra, boreal, and temperate soils. The thawing of soils during winter-summer transitions induces the release of decomposable organic carbon and acceleration of soil respiration. The winter-spring fluxes of CO(2 )from permanently and seasonally frozen soils are essential part of annual carbon budget varying from 5 to 50%. The mechanisms of the freeze-thaw activation are not absolutely clear and need clarifying. We investigated the effect of repeated freezing-thawing events on CO(2 )emission from intact arable and forest soils (Luvisols, loamy silt; Central Germany) at different moisture (65% and 100% of WHC). RESULTS: Due to the measurement of the CO(2 )flux in two hours intervals, the dynamics of CO(2 )emission during freezing-thawing events was described in a detailed way. At +10°C (initial level) in soils investigated, carbon dioxide emission varied between 7.4 to 43.8 mg C m(-2)h(-1 )depending on land use and moisture. CO(2 )flux from the totally frozen soil never reached zero and amounted to 5 to 20% of the initial level, indicating that microbial community was still active at -5°C. Significant burst of CO(2 )emission (1.2–1.7-fold increase depending on moisture and land use) was observed during thawing. There was close linear correlation between CO(2 )emission and soil temperature (R(2 )= 0.86–0.97, P < 0.001). CONCLUSION: Our investigations showed that soil moisture and land use governed the initial rate of soil respiration, duration of freezing and thawing of soil, pattern of CO(2 )dynamics and extra CO(2 )fluxes. As a rule, the emissions of CO(2 )induced by freezing-thawing were more significant in dry soils and during the first freezing-thawing cycle (FTC). The acceleration of CO(2 )emission was caused by different processes: the liberation of nutrients upon the soil freezing, biological activity occurring in unfrozen water films, and respiration of cold-adapted microflora
Search for new phenomena in final states with an energetic jet and large missing transverse momentum in pp collisions at √ s = 8 TeV with the ATLAS detector
Results of a search for new phenomena in final states with an energetic jet and large missing transverse momentum are reported. The search uses 20.3 fb−1 of √ s = 8 TeV data collected in 2012 with the ATLAS detector at the LHC. Events are required to have at least one jet with pT > 120 GeV and no leptons. Nine signal regions are considered with increasing missing transverse momentum requirements between Emiss T > 150 GeV and Emiss T > 700 GeV. Good agreement is observed between the number of events in data and Standard Model expectations. The results are translated into exclusion limits on models with either large extra spatial dimensions, pair production of weakly interacting dark matter candidates, or production of very light gravitinos in a gauge-mediated supersymmetric model. In addition, limits on the production of an invisibly decaying Higgs-like boson leading to similar topologies in the final state are presente
The Transcription Factor Ultraspiracle Influences Honey Bee Social Behavior and Behavior-Related Gene Expression
Behavior is among the most dynamic animal phenotypes, modulated by a variety of internal and external stimuli. Behavioral differences are associated with large-scale changes in gene expression, but little is known about how these changes are regulated. Here we show how a transcription factor (TF), ultraspiracle (usp; the insect homolog of the Retinoid X Receptor), working in complex transcriptional networks, can regulate behavioral plasticity and associated changes in gene expression. We first show that RNAi knockdown of USP in honey bee abdominal fat bodies delayed the transition from working in the hive (primarily “nursing” brood) to foraging outside. We then demonstrate through transcriptomics experiments that USP induced many maturation-related transcriptional changes in the fat bodies by mediating transcriptional responses to juvenile hormone. These maturation-related transcriptional responses to USP occurred without changes in USP's genomic binding sites, as revealed by ChIP–chip. Instead, behaviorally related gene expression is likely determined by combinatorial interactions between USP and other TFs whose cis-regulatory motifs were enriched at USP's binding sites. Many modules of JH– and maturation-related genes were co-regulated in both the fat body and brain, predicting that usp and cofactors influence shared transcriptional networks in both of these maturation-related tissues. Our findings demonstrate how “single gene effects” on behavioral plasticity can involve complex transcriptional networks, in both brain and peripheral tissues
The Antiquity and Evolutionary History of Social Behavior in Bees
A long-standing controversy in bee social evolution concerns whether highly eusocial behavior has evolved once or twice within the corbiculate Apidae. Corbiculate bees include the highly eusocial honey bees and stingless bees, the primitively eusocial bumble bees, and the predominantly solitary or communal orchid bees. Here we use a model-based approach to reconstruct the evolutionary history of eusociality and date the antiquity of eusocial behavior in apid bees, using a recent molecular phylogeny of the Apidae. We conclude that eusociality evolved once in the common ancestor of the corbiculate Apidae, advanced eusociality evolved independently in the honey and stingless bees, and that eusociality was lost in the orchid bees. Fossil-calibrated divergence time estimates reveal that eusociality first evolved at least 87 Mya (78 to 95 Mya) in the corbiculates, much earlier than in other groups of bees with less complex social behavior. These results provide a robust new evolutionary framework for studies of the organization and genetic basis of social behavior in honey bees and their relatives
RNA Interference of Four Genes in Adult Bactrocera dorsalis by Feeding Their dsRNAs
BACKGROUND: RNA interference (RNAi) is a powerful method to inhibit gene expression in a sequence specific manner. Recently silencing the target gene through feeding has been successfully carried out in many insect species. METHODOLOGY/PRINCIPAL FINDINGS: Escherichia coli strain HT115 was genetically engineered to express dsRNA targeting genes that encode ribosomal protein Rpl19, V type ATPase D subunit, the fatty acid elongase Noa and a small GTPase Rab11. qRT-PCR showed that mRNA level of four target genes was reduced compared to ds-egfp control by feeding either engineered bacteria or dsRNAs. The maximum down-regulation of each gene varied from 35% to 100%. Tissue specific examination indicated that RNAi could be observed not only in midgut but also in other tissues like the ovary, nervous system and fat body. Silencing of rab11 through ingestion of dsRNA killed 20% of adult flies. Egg production was affected through feeding ds-noa and ds-rab11 compared to ds-egfp group. Adult flies were continuously fed with dsRNA and bacteria expressing dsRNA for 14 days and up-regulations of target genes were observed during this process. The transcripts of noa showed up-regulation compared to ds-egfp control group in four tissues on day 7 after continuous feeding either dsRNA or engineered bacteria. The maximum over-expression is 21 times compared to ds-egfp control group. Up-regulation of rab11 mRNA level could be observed in testes on day 7 after continuous bacteria treatment and in midgut on day 2 after ds-rab11 treatment. This phenomenon could also be observed in rpl19 groups. CONCLUSIONS: Our results suggested that it is feasible to silence genes by feeding dsRNA and bacteria expressing dsRNA in Bactrocera dorsalis. Additionally the over-expression of the target gene after continuously feeding dsRNA or bacteria was observed
A Genetic and Structural Study of Genome Rearrangements Mediated by High Copy Repeat Ty1 Elements
Ty elements are high copy number, dispersed repeated sequences in the Saccharomyces cerevisiae genome known to mediate gross chromosomal rearrangements (GCRs). Here we found that introduction of Ty912, a previously identified Ty1 element, onto the non-essential terminal region of the left arm of chromosome V led to a 380-fold increase in the rate of accumulating GCRs in a wild-type strain. A survey of 48 different mutations identified those that either increased or decreased the rate of Ty-mediated GCRs and demonstrated that suppression of Ty-mediated GCRs differs from that of both low copy repeat sequence- and single copy sequence-mediated GCRs. The majority of the Ty912-mediated GCRs observed were monocentric nonreciprocal translocations mediated by RAD52-dependent homologous recombination (HR) between Ty912 and a Ty element on another chromosome arm. The remaining Ty912-mediated GCRs appeared to involve Ty912-mediated formation of unstable dicentric translocation chromosomes that were resolved by one or more Ty-mediated breakage-fusion-bridge cycles. Overall, the results demonstrate that the Ty912-mediated GCR assay is an excellent model for understanding mechanisms and pathways that suppress genome rearrangements mediated by high copy number repeat sequences, as well as the mechanisms by which such rearrangements occur
World-wide distributions of lactase persistence alleles and the complex effects of recombination and selection
The genetic trait of lactase persistence (LP) is associated with at least five independent functional single nucleotide variants in a regulatory region about 14 kb upstream of the lactase gene [-13910*T (rs4988235), -13907*G (rs41525747), -13915*G (rs41380347), -14009*G (rs869051967) and -14010*C (rs145946881)]. These alleles have been inferred to have spread recently and present-day frequencies have been attributed to positive selection for the ability of adult humans to digest lactose without risk of symptoms of lactose intolerance. One of the inferential approaches used to estimate the level of past selection has been to determine the extent of haplotype homozygosity (EHH) of the sequence surrounding the SNP of interest. We report here new data on the frequencies of the known LP alleles in the 'Old World' and their haplotype lineages. We examine and confirm EHH of each of the LP alleles in relation to their distinct lineages, but also show marked EHH for one of the older haplotypes that does not carry any of the five LP alleles. The region of EHH of this (B) haplotype exactly coincides with a region of suppressed recombination that is detectable in families as well as in population data, and the results show how such suppression may have exaggerated haplotype-based measures of past selection
Yeast thioredoxin reductase Trr1p controls TORC1-regulated processes
The thioredoxin system plays a predominant role in the control of cellular redox status. Thioredoxin reductase fuels the system with reducing power in the form of NADPH. The TORC1 complex promotes growth and protein synthesis when nutrients, particularly amino acids, are abundant. It also represses catabolic processes, like autophagy, which are activated during starvation. We analyzed the impact of yeast cytosolic thioredoxin reductase TRR1 deletion under different environmental conditions. It shortens chronological life span and reduces growth in grape juice fermentation. TRR1 deletion has a global impact on metabolism during fermentation. As expected, it reduces oxidative stress tolerance, but a compensatory response is triggered, with catalase and glutathione increasing. Unexpectedly, TRR1 deletion causes sensitivity to the inhibitors of the TORC1 pathway, such as rapamycin. This correlates with low Tor2p kinase levels and indicates a direct role of Trr1p in its stability. Markers of TORC1 activity, however, suggest increased TORC1 activity. The autophagy caused by nitrogen starvation is reduced in the trr1Δ mutant. Ribosomal protein Rsp6p is dephosphorylated in the presence of rapamycin. This dephosphorylation diminishes in the TRR1 deletion strain. These results show a complex network of interactions between thioredoxin reductase Trr1p and the processes controlled by TOR
- …