229 research outputs found

    Picosecond carrier recombination dynamics in chalcogen-hyperdoped silicon

    Get PDF
    Intermediate-band materials have the potential to be highly efficient solar cells and can be fabricated by incorporating ultrahigh concentrations of deep-level dopants. Direct measurements of the ultrafast carrier recombination processes under supersaturated dopant concentrations have not been previously conducted. Here, we use optical-pump/terahertz-probe measurements to study carrier recombination dynamics of chalcogen-hyperdoped silicon with sub-picosecond resolution. The recombination dynamics is described by two exponential decay time scales: a fast decay time scale ranges between 1 and 200 ps followed by a slow decay on the order of 1 ns. In contrast to the prior theoretical predictions, we find that the carrier lifetime decreases with increasing dopant concentration up to and above the insulator-to-metal transition. Evaluating the material's figure of merit reveals an optimum doping concentration for maximizing performance.Center for Clean Water and Clean Energy at MIT and KFUPMNational Science Foundation (U.S.) (Grant Contract ECCS-1102050)National Science Foundation (U.S.) (United States. Dept. of Energy Contract EEC-1041895

    Design, construction and characterization of a set of insulated bacterial promoters

    Get PDF
    We have generated a series of variable-strength, constitutive, bacterial promoters that act predictably in different sequence contexts, span two orders of magnitude in strength and contain convenient sites for cloning and the introduction of downstream open-reading frames. Importantly, their design insulates these promoters from the stimulatory or repressive effects of many 5′- or 3′-sequence elements. We show that different promoters from our library produce constant relative levels of two different proteins in multiple genetic contexts. This set of promoters should be a useful resource for the synthetic-biology community

    AMI Large Array radio continuum observations of Spitzer c2d small clouds and cores

    Full text link
    We perform deep 1.8 cm radio continuum imaging towards thirteen protostellar regions selected from the Spitzer c2d small clouds and cores programme at high resolution (25") in order to detect and quantify the cm-wave emission from deeply embedded young protostars. Within these regions we detect fifteen compact radio sources which we identify as radio protostars including two probable new detections. The sample is in general of low bolometric luminosity and contains several of the newly detected VeLLO sources. We determine the 1.8 cm radio luminosity to bolometric luminosity correlation, L_rad -L_bol, for the sample and discuss the nature of the radio emission in terms of the available sources of ionized gas. We also investigate the L_rad-L_IR correlation and suggest that radio flux density may be used as a proxy for the internal luminosity of low luminosity protostars.Comment: submitted MNRA

    Hundreds of variants clustered in genomic loci and biological pathways affect human height

    Get PDF
    Most common human traits and diseases have a polygenic pattern of inheritance: DNA sequence variants at many genetic loci influence the phenotype. Genome-wide association (GWA) studies have identified more than 600 variants associated with human traits, but these typically explain small fractions of phenotypic variation, raising questions about the use of further studies. Here, using 183,727 individuals, we show that hundreds of genetic variants, in at least 180 loci, influence adult height, a highly heritable and classic polygenic trait. The large number of loci reveals patterns with important implications for genetic studies of common human diseases and traits. First, the 180 loci are not random, but instead are enriched for genes that are connected in biological pathways (P = 0.016) and that underlie skeletal growth defects (P < 0.001). Second, the likely causal gene is often located near the most strongly associated variant: in 13 of 21 loci containing a known skeletal growth gene, that gene was closest to the associated variant. Third, at least 19 loci have multiple independently associated variants, suggesting that allelic heterogeneity is a frequent feature of polygenic traits, that comprehensive explorations of already-discovered loci should discover additional variants and that an appreciable fraction of associated loci may have been identified. Fourth, associated variants are enriched for likely functional effects on genes, being over-represented among variants that alter amino-acid structure of proteins and expression levels of nearby genes. Our data explain approximately 10% of the phenotypic variation in height, and we estimate that unidentified common variants of similar effect sizes would increase this figure to approximately 16% of phenotypic variation (approximately 20% of heritable variation). Although additional approaches are needed to dissect the genetic architecture of polygenic human traits fully, our findings indicate that GWA studies can identify large numbers of loci that implicate biologically relevant genes and pathways.

    Catching Element Formation In The Act

    Full text link
    Gamma-ray astronomy explores the most energetic photons in nature to address some of the most pressing puzzles in contemporary astrophysics. It encompasses a wide range of objects and phenomena: stars, supernovae, novae, neutron stars, stellar-mass black holes, nucleosynthesis, the interstellar medium, cosmic rays and relativistic-particle acceleration, and the evolution of galaxies. MeV gamma-rays provide a unique probe of nuclear processes in astronomy, directly measuring radioactive decay, nuclear de-excitation, and positron annihilation. The substantial information carried by gamma-ray photons allows us to see deeper into these objects, the bulk of the power is often emitted at gamma-ray energies, and radioactivity provides a natural physical clock that adds unique information. New science will be driven by time-domain population studies at gamma-ray energies. This science is enabled by next-generation gamma-ray instruments with one to two orders of magnitude better sensitivity, larger sky coverage, and faster cadence than all previous gamma-ray instruments. This transformative capability permits: (a) the accurate identification of the gamma-ray emitting objects and correlations with observations taken at other wavelengths and with other messengers; (b) construction of new gamma-ray maps of the Milky Way and other nearby galaxies where extended regions are distinguished from point sources; and (c) considerable serendipitous science of scarce events -- nearby neutron star mergers, for example. Advances in technology push the performance of new gamma-ray instruments to address a wide set of astrophysical questions.Comment: 14 pages including 3 figure

    Feedback from winds and supernovae in massive stellar clusters - II. X-ray emission

    Get PDF
    The X-ray emission from a simulated massive stellar cluster is investigated. The emission is calculated from a 3D hydrodynamical model which incorporates the mechanical feedback from the stellar winds of three O stars embedded in a giant molecular cloud (GMC) clump containing 3240M of molecular material within a 4 pc radius. A simple prescription for the evolution of the stars is used, with the first supernova (SN) explosion at t = 4.4Myr. We find that the presence of the GMC clump causes short-lived attenuation effects on the X-ray emission of the cluster. However, once most of the material has been ablated away by the winds, the remaining dense clumps do not have a noticeable effect on the attenuation compared with the assumed interstellar medium (ISM) column. We determine the evolution of the cluster X-ray luminosity, LX, and spectra, and generate synthetic images. The intrinsic X-ray luminosity drops from nearly 1034 erg s-1 while the winds are 'bottled up', to a nearconstant value of 1.7 × 1032 erg s-1 between t = 1 and 4Myr. LX reduces slightly during each star's red supergiant stage due to the depressurization of the hot gas. However, LX increases to 1034 erg s-1 during each star's Wolf-Rayet stage. The X-ray luminosity is enhanced by two to three orders of magnitude to ̃1037 erg s-1 for at least 4600 yr after each SN explosion, at which time the blastwave leaves the grid and theX-ray luminosity drops. The X-ray luminosity of our simulation is generally considerably fainter than predicted from spherically symmetric bubble models, due to the leakage of hot gas material through gaps in the outer shell. This process reduces the pressure within our simulation and thus the X-ray emission. However, the X-ray luminosities and temperatures which we obtain are comparable to similarly powerful massive young clusters

    15 years of galactic surveys and hard X-ray background measurements

    Get PDF
    The INTEGRAL hard X-ray surveys have proven to be of fundamental importance. INTEGRAL has mapped the Galactic plane with its large field of view and excellent sensitivity. Such hard X-ray snapshots of the whole Milky Way on a time scale of a year are beyond the capabilities of past and current narrow-FOV grazing incidence X-ray telescopes. By expanding the INTEGRAL X-ray survey into shorter timescales, a productive search for transient X-ray emitters was made possible. In more than fifteen years of operation, the INTEGRAL observatory has given us a sharper view of the hard X-ray sky, and provided the triggers for many follow-up campaigns from radio frequencies to gamma-rays. In addition to conducting a census of hard X-ray sources across the entire sky, INTEGRAL has carried out, through Earth occultation manoeuvres, unique observations of the large-scale cosmic X-ray background, which will without question be included in the annals of X-ray astronomy as one of the mission’s most salient contribution to our understanding of the hard X-ray sky.</div

    Detection of small RNAs in Bordetella pertussis and identification of a novel repeated genetic element

    Get PDF
    Background: Small bacterial RNAs (sRNAs) have been shown to participate in the regulation of gene expression and have been identified in numerous prokaryotic species. Some of them are involved in the regulation of virulence in pathogenic bacteria. So far, little is known about sRNAs in Bordetella, and only very few sRNAs have been identified in the genome of Bordetella pertussis, the causative agent of whooping cough. Results: An in silico approach was used to predict sRNAs genes in intergenic regions of the B. pertussis genome. The genome sequences of B. pertussis, Bordetella parapertussis, Bordetella bronchiseptica and Bordetella avium were compared using a Blast, and significant hits were analyzed using RNAz. Twenty-three candidate regions were obtained, including regions encoding the already documented 6S RNA, and the GCVT and FMN riboswitches. The existence of sRNAs was verified by Northern blot analyses, and transcripts were detected for 13 out of the 20 additional candidates. These new sRNAs were named Bordetella pertussis RNAs, bpr. The expression of 4 of them differed between the early, exponential and late growth phases, and one of them, bprJ2, was found to be under the control of BvgA/BvgS two-component regulatory system of Bordetella virulence. A phylogenetic study of the bprJ sequence revealed a novel, so far undocumented repeat of ~90 bp, found in numerous copies in the Bordetella genomes and in that of other Betaproteobacteria. This repeat exhibits certain features of mobil
    corecore