1,146 research outputs found

    The physics of a small-scale tearing mode in collisionless slab plasmas

    Get PDF
    Microtearing modes have been widely reported as a tearing parity electron temperature gradient driven plasma instability that leads to fine scale tearing of the magnetic flux surfaces thereby resulting in reconnection of magnetic field lines and formation of magnetic islands. In slab geometry it has previously been shown that the drive mechanism requires a finite collision frequency. However, recent gyrokinetic simulations in toroidal systems have found a microtearing mode existing at low and zero collision frequency. It is shown here that linear gyrokinetic simulations can demonstrate a collisionless fine-scale tearing parity instability even in slab geometry. Detailed studies reveal that these slab modes are sensitive to electron finite Larmor radius effects, and have a radial wavenumber much smaller than the binormal wavenumber, which is comparable to the ion Larmor radius. Furthermore, they exist even in the electrostatic limit and electromagnetic effects actually have a stabilising influence on this collisionless tearing mode. An analytic model shows that this collisionless small scale tearing mode is consistent with a tearing parity slab electron temperature gradient (ETG) mode, which can be more unstable than the twisting parity ETG mode that is often studied. This small-scale tearing parity mode can lead to magnetic islands, which, in turn, can influence turbulent transport in magnetised plasmas

    Optimising TGLF for a Q=10 Burning Spherical Tokamak

    Get PDF
    TGLF transport model predictions have been assessed in the vicinity of a theoretical high β burning plasma spherical tokamak at Q=10. Linear micro-stability calculations from TGLF have been compared on a surface at mid-radius with the gyrokinetic code GS2. Differences between TGLF and GS2 spectra can be characterised by the RMS difference in growth rates, σγ. We find considerable improvement in the quality of TGLF growth rate spectrum can be achieved by increasing the number of parallel basis functions and by tuning the TGLF parameter used in the model for trapped particles, θtrap

    Finite ion orbit width effect on the neoclassical tearing mode threshold in a tokamak plasma

    Get PDF
    A new drift kinetic theory for the response of ions to small magnetic islands in toroidal plasma is presented. Islands whose width w is comparable to the ion poloidal Larmor radius ρθi are considered, expanding the ion response solution in terms of Δ = w/r << 1, where r is the minor radius. In this limit, the ion distribution can be represented as a function of toroidal canonical momentum, p. With effects of grad-B and curvature drifts taken into account, the ion distribution function is a constant on a ‘drift island’ structure, which is identical to the magnetic island but radially shifted by O(ρθi). The distribution is then flattened across the drift island, rather than the magnetic island. For small islands w ~ ρθi, the pressure gradient is maintained across the magnetic island, suppressing the bootstrap current drive for the neoclassical tearing mode (NTM) growth. As w → 0, the ions are largely unperturbed. However, the electrons respond to the electrostatic potential required for quasi-neutrality and this provides a stabilizing contribution to the NTM evolution. This gives a new physical understanding of the NTM threshold mechanism, with implications for the design of NTM control systems for future tokamaks such as ITER

    Overview of recent physics results from MAST

    Get PDF
    New results from MAST are presented that focus on validating models in order to extrapolate to future devices. Measurements during start-up experiments have shown how the bulk ion temperature rise scales with the square of the reconnecting field. During the current ramp-up, models are not able to correctly predict the current diffusion. Experiments have been performed looking at edge and core turbulence. At the edge, detailed studies have revealed how filament characteristics are responsible for determining the near and far scrape off layer density profiles. In the core the intrinsic rotation and electron scale turbulence have been measured. The role that the fast ion gradient has on redistributing fast ions through fishbone modes has led to a redesign of the neutral beam injector on MAST Upgrade. In H-mode the turbulence at the pedestal top has been shown to be consistent with being due to electron temperature gradient modes. A reconnection process appears to occur during edge localized modes (ELMs) and the number of filaments released determines the power profile at the divertor. Resonant magnetic perturbations can mitigate ELMs provided the edge peeling response is maximised and the core kink response minimised. The mitigation of intrinsic error fields with toroidal mode number n  >  1 has been shown to be important for plasma performance

    Complex geomorphologic assemblage of terrains in association with the banded terrain in Hellas basin, Mars

    Get PDF
    Hellas basin acts as a major sink for the southern highlands of Mars and is likely to have recorded several episodes of sedimentation and erosion. The north-western part of the basin displays a potentially unique Amazonian landscape domain in the deepest part of Hellas, called “banded terrain”, which is a deposit characterized by an alternation of narrow band shapes and inter-bands displaying a sinuous and relatively smooth surface texture suggesting a viscous flow origin. Here we use high-resolution (HiRISE and CTX) images to assess the geomorphological interaction of the banded terrain with the surrounding geomorphologic domains in the NW interior of Hellas to gain a better understanding of the geological evolution of the region as a whole. Our analysis reveals that the banded terrain is associated with six geomorphologic domains: a central plateau named Alpheus Colles, plain deposits (P1 and P2), reticulate (RT1 and RT2) and honeycomb terrains. Based on the analysis of the geomorphology of these domains and their cross-cutting relationships, we show that no widespread deposition post-dates the formation of the banded terrain, which implies that this domain is the youngest and latest deposit of the interior of Hellas. Therefore, the level of geologic activity in the NW Hellas during the Amazonian appears to have been relatively low and restricted to modification of the landscape through mechanical weathering, aeolian and periglacial processes. Thermophysical data and cross-cutting relationships support hypotheses of modification of the honeycomb terrain via vertical rise of diapirs such as ice diapirism, and the formation of the plain deposits through deposition and remobilization of an ice-rich mantle deposit. Finally, the observed gradual transition between honeycomb and banded terrain suggests that the banded terrain may have covered a larger area of the NW interior of Hellas in the past than previously thought. This has implications on the understanding of the evolution of the deepest part of Hellas

    Search for the standard model Higgs boson at LEP

    Get PDF

    Search for direct production of charginos and neutralinos in events with three leptons and missing transverse momentum in √s = 7 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for the direct production of charginos and neutralinos in final states with three electrons or muons and missing transverse momentum is presented. The analysis is based on 4.7 fb−1 of proton–proton collision data delivered by the Large Hadron Collider and recorded with the ATLAS detector. Observations are consistent with Standard Model expectations in three signal regions that are either depleted or enriched in Z-boson decays. Upper limits at 95% confidence level are set in R-parity conserving phenomenological minimal supersymmetric models and in simplified models, significantly extending previous results
    corecore